Tag: introduction to ellipse

Questions Related to introduction to ellipse

The locus of the mid points of the portion of the tangents to the ellipse intercepted between the axes

  1. $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=4$

  2. $\dfrac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=4$

  3. $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=4$

  4. none of these


Correct Option: A

Eccentricity of ellipse $\frac{{{x^2}}}{{{a^2} + 1}} + \frac{{{y^2}}}{{{a^2} + 2}} = 1$ is $\frac{1}{{\sqrt 3 }}$  then length of Latusrectum is 

  1. $\frac{8}{{\sqrt 3 }}$

  2. $\frac{4}{{\sqrt 3 }}$

  3. $2\sqrt 3 $

  4. $\frac{{\sqrt 3 }}{2}$


Correct Option: A
Explanation:

$\cfrac{x^2}{a^2+1}+\cfrac{y^2}{a^2+2}=1$

Eccentricity of ellipse $=\cfrac{1}{\sqrt 3}$
So, $\cfrac{\sqrt{b^2-a^2}}{a}=\cfrac{1}{\sqrt 3}$
Where ellipse 
$\cfrac{x^2}{a^2+1}+\cfrac{y^2}{a^2+2}=1$
So, here
$\cfrac{\sqrt{a^2+2a^2-1}}{a}=\cfrac{1}{\sqrt 3}$
$\implies a^2=2$
So, equation is 
$\cfrac{x^2}{3}+\cfrac{y^2}{4}=1$
Latus rectum $=\cfrac{2b^2}{a}=\cfrac{2\times 4}{\sqrt 3}=\cfrac{8}{\sqrt 3}$

The equation $\dfrac { x ^ { 2 } } { 10 - a } + \dfrac { y ^ { 2 } } { 4 - a } = 1$ represents an ellipse if

  1. $a < 4$

  2. $a > 4$

  3. $4 < a < 10$

  4. None of these


Correct Option: D
Explanation:

$\dfrac{x^2}{10-a}+\dfrac{y^2}{4-a}=1$

For this equation to represent an ellipse its eccentricity shoule lie between $0$ and $1$.
$\sqrt{1-\dfrac{b^2}{a^2}}< 1$
$0< 1-\dfrac{(4-a)^2}{(10-a)^2} <1$
$0 < (10-a)^2-(4-a)^2 <1$
$0< 84-12a <1$
$0< (7-a)12<1$
$12(7-a)> 0$ and
$12(7-a)<1$
$a< 7$ and $7-a<\dfrac{1}{12}$
$a< 7$ and $a >\dfrac{83}{12}$

If the latus rectum of an ellipse $x ^ { 2 } \tan ^ { 2 } \varphi + y ^ { 2 } \sec ^ { 2 } \varphi =$ $1$ is $1 / 2 $ then $\varphi $ is

  1. $\pi / 2$

  2. $\pi / 6$

  3. $\pi / 3$

  4. $5$ $\pi/ 12$


Correct Option: D
Explanation:

Given $x^2 tan^2 \phi + y^2 \, sec^2 \phi = 1$

$\rightarrow \dfrac{x^2}{(1/tan^2 \phi)} + \dfrac{y^2}{(1/sec^2 \phi)} = 1$
$a = \pm \dfrac{1}{tan \phi} , b = \pm \dfrac{1}{sec \phi}$
and $\rightarrow e^2 = 1 - \dfrac{b^2}{a^2}$
$\rightarrow e^2 = 1 - \dfrac{1/sec^2 \phi}{1/tan^2 \phi} = 1 - \dfrac{tan^2 \phi}{sec^2 \phi}$
$\rightarrow e^2 = 1 - sin^2 \phi = cos^2 \phi$
length of latus rectum 
$(LL') = \dfrac{2 b^2}{a} = 2a (1 - e^2)$
$\rightarrow 2a (1 - cos^2 \phi) = 2a. sin^2 \phi = \dfrac{1}{2} $ (Given)
$\therefore 2. \dfrac{cos \phi}{sin \phi} sin^2 \phi = \dfrac{1}{2}$
$\rightarrow 2 cos \phi \, sin \phi = \dfrac{1}{2}$
$\rightarrow sin^2 \phi = \dfrac{1}{2} $
$\rightarrow 2 \phi = \dfrac{\pi}{6} , \dfrac{5 \pi}{6}$
$\therefore \phi = \dfrac{\pi}{12}$    or 
$\phi = \dfrac{ 5 \pi}{12}$

vertices of an ellipse are $(0,\pm 10)$ and its eccentricity $e=4/5$ then its equation is 

  1. $90x^2-40y^2=3600$

  2. $80x^2+50y^2=4000$

  3. $36x^2+100y^2=3600$

  4. $100x^2+36y^2=3600$


Correct Option: D
Explanation:

Let the equation of the required ellipse be 

$\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1\longrightarrow \left( 1 \right) $
since the vertices of the ellipse are on $y$-axis, so the coordinate of the vertices are $\left( 0,\pm b \right) $
$\therefore b=10\ Now,\quad { a }^{ 2 }=b^{ 2 }\left( 1-{ e }^{ 2 } \right) \ \Rightarrow { a }^{ 2 }=100\left( 1-\dfrac { 16 }{ 25 }  \right) \ \Rightarrow { a }^{ 2 }=36\ $
substituting the value of ${ a }^{ 2 }$ and ${ b }^{ 2 }$ in equation $(1)$
we get, $\dfrac { { x }^{ 2 } }{ 36 } +\dfrac { { y }^{ 2 } }{ 100 } =1\ \Rightarrow 100{ x }^{ 2 }+36{ y }^{ 2 }=3600\ \Rightarrow 100{ x }^{ 2 }+36{ y }^{ 2 }-3600=0$

The equation of the latus rectum of the ellipse $9{x}^{2}+4{y}^{2}-18x-8y-23=0$ are

  1. $y=\pm \sqrt{5}$

  2. $y=- \sqrt{5}$

  3. $y=1\pm \sqrt{5}$

  4. $y=-1\pm \sqrt{5}$


Correct Option: C
Explanation:
$9x^2+4y^2-18x-8y-23=0$
$=(3x-3)^2+(2y-2)^2-13-23=0$
$\Rightarrow \ 9(x-1)^2+4(y-1)^2=36$
$\Rightarrow \ \dfrac {(x-1)^2}{4}+\dfrac {(y-1)^2}{9}=1$
Shifting origin to $(1,1)\Rightarrow x-1=x,\ y-1=y$
$\Rightarrow \ \dfrac {x^2}{4}+\dfrac {y^2}{9}=1$
$a=2,= b=3,\ e^2=1+\dfrac {a^2}{b^2}=1+\dfrac {4}{9}=\dfrac {5}{9}$
$\Rightarrow \ e=\pm \sqrt {\dfrac {5}{9}}+\dfrac {\sqrt 5}{3}$
$\Rightarrow \ $ Focus $=(0,\ \pm be)=(0,\ \pm \sqrt 5)$
$\Rightarrow \ $ latus ractum $\Rightarrow \ y=\pm \sqrt {5}$
Shifting back, $y=y-1$
$\Rightarrow \ y-1=\pm \sqrt {5}$
$\Rightarrow \ y=1\pm \sqrt 5\  \Rightarrow \ (C) $


If there is exactly one tangent at a distance of $4$ units from one of the locus of $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{a^{2}-16}=1, a>4$, then length of latus rectum is :-

  1. $16$

  2. $\dfrac{8}{3}$

  3. $12$

  4. $15$


Correct Option: A

The equation $\dfrac{x^2}{2-r}+\dfrac{y^2}{r-5}+1=0$ represents an ellipse, if

  1. $r>2$

  2. $r\in \left(2,:\dfrac{7}{2}\right)\cup \left(\dfrac{7}{2},5\right)$

  3. $r>5$

  4. $r<2$


Correct Option: A
Explanation:
Equating the equation of the ellipse with the second-degree equation
$A{x}^{2}+Bxy+C{y}^{2}+Dx+Ey+F=0$ with $\dfrac{{x}^{2}}{2-r}+\dfrac{{y}^{2}}{r-5}+1=0$
we get $A=\dfrac{1}{2-r}, B=0, C=\dfrac{1}{r-5},D=0,E=0$ and $F=1$
For the second degree equation to represent an ellipse, the coefficients must satisfy the discriminant condition ${B}^{2}-4AC<0$ and also $A\neq C$
$\Rightarrow {\left(0\right)}^{2}-4\left(\dfrac{1}{2-r}\right)\left(\dfrac{1}{r-5}\right)<0$
$\Rightarrow -4\left(\dfrac{1}{2-r}\right)\left(\dfrac{1}{r-5}\right)<0$
$\Rightarrow \left(\dfrac{1}{2-r}\right)\left(\dfrac{1}{r-5}\right)>0$
$\Rightarrow \left(2-r\right)\left(r-5\right)<0$
$\Rightarrow \left(r-2\right)\left(r-5\right)>0$
$\Rightarrow r>2$

Distance between the foci of the curve represented by the equation $x=3+4\cos\theta, y=2+3\sin\theta$, is?

  1. $3\sqrt{7}$

  2. $2\sqrt{7}$

  3. $\sqrt{7}$

  4. $\dfrac{\sqrt{7}}{2}$


Correct Option: A

Equation of the ellipse whose minor axis is equal to the distance between foci and whose latus rectum is $10 ,$ is given by ____________.

  1. $2 x ^ { 2 } + 3 y ^ { 2 } = 100$

  2. $2 x ^ { 2 } + 3 y ^ { 2 } = 80$

  3. $x ^ { 2 } + 2 y ^ { 2 } = 100$

  4. none of these


Correct Option: C