Tag: roman numerals

Questions Related to roman numerals

Express $19$ in Roman numeral:

  1. $XIX$

  2. $XXI$

  3. $XX$

  4. $XI$


Correct Option: A
Explanation:

In Roman numeral form, 

$10 = X$
$9 = IX$

$\Rightarrow 19 = XIX$

Sumit scored $CDLXXXII$ marks in the annual examination. What is the Hindu-Arabic number for this Roman Number?

  1. $500$

  2. $432$

  3. $482$

  4. $453$


Correct Option: C
Explanation:

Hindu arabic number for $CDLXXXII=482$

Hence the correct answer is option C.

Roman numerical for the greatest three digit number is ________ .

  1. $IXIXIX$

  2. $CMXCIX$

  3. $CMIXIX$

  4. $CMIIC$


Correct Option: B
Explanation:

Greatest $3$ digit number is $999$

Roman numeral for $ 900 = CM$
Roman Numeral for $ 90 = XC$
Roman Numeral for $ 9 = IX$
Roman Numeral for $ 999 = CMXCIX$

Find the value of $MMDCCCLX-MMDCCLIII$.

  1. $XCIX$

  2. $LXII$

  3. $XC$

  4. $CVII$


Correct Option: D
Explanation:

$MMDCCCLX-MMDCCLIII$

= $2860-2753$
= $107$ = $CVII$

Which of the following statements is/are INCORRECT?
(i) Eighty four in Roman numeral is written as $CXXXIV$
(i) There are seven zeroes in $1$ crore.
(iii) There are ten thousand milligrams in $1kg$
(iv) The smallest $4$-digit number formed by using all the digits $4,3,0,8$ without repetition is $3048$

  1. Both (i) and (iii)

  2. Both (i) and (iv)

  3. Only (i)

  4. Only (ii)


Correct Option: A
Explanation:
(i) $84=LXXXIV$
(ii) $1\quad crore=10000000$
(iii) $1kg=1000g=1000\times 10000mg=10000000mg$
(iv) Smallest number formed is $3048$
(i) and (iii) are INCORRECT
Answer : A

Using binomial theorem if $6^{n}-5n$ divided by $25$ it always leaves the remainder $5$.

  1. True

  2. False


Correct Option: B

$I$ can be subtracted from 

  1. $V, X $ 

  2. $M$  only

  3. $V$  only

  4. none


Correct Option: A
Explanation:


Hence,$ I$  can be subtracted from$ V, X $

Roman numerals for $498$ is given by:

  1. $COCXVIII$

  2. $COCXIV$

  3. $CDXCVIII$

  4. $COXCVII$


Correct Option: C
Explanation:

$\Rightarrow$  The given number is $498.$

$\Rightarrow$  In Roman numbers $I=1,\,V=5,\,X=10,\,C=100$ and $D=500$.
$\Rightarrow$  $498=400+90+8$      [ Breaking the number into place value of subgroups ]
$\Rightarrow$  $400=500-100=D-C=CD$
$\Rightarrow$  $90=100-10=C-X=XC$
$\Rightarrow$  $8=5+1+1+1=V+I+I+I=VIII$
$\Rightarrow$  Now adding all the Roman numeral.
$\therefore$   $498=400+90+8=CD+XC+VIII=CDXCVIII$
$\therefore$   Roman numerals for 498 is $CDXCVIII.$

The symbols of roman numerals can never be repeated is ________.

  1. I

  2. V

  3. X

  4. None of these


Correct Option: B
Explanation:

Consider the symbol that can never be repeated.

Hence, $V$ is the symbol that can never be repeated.

Hence, this is the answer.

Which of the following is a correct roman numeral ?

  1. CXL

  2. CC

  3. XX

  4. All of these


Correct Option: D
Explanation:

 

Given that,

$CXL,CC,XX$

We know that,

$CXL=140$ ,CC=200, $XX=20$

 

Hence, this is the answer.