Tag: introduction to interests

Questions Related to introduction to interests

Rajan borrowed Rs. $50,000$ from Rakesh at simple interest. After $3$ years, Rakesh got Rs. $3000$ more than what he had given to Rajan. What was the rate of interest per annum?

  1. $2\%$

  2. $5\%$

  3. $8\%$

  4. $10\%$


Correct Option: A
Explanation:

Rate $= \displaystyle \left ( \frac{100 \times 300}{5000 \times 3} \right )$% = 2%

During a period of two years, a principal of Rs. $100$ amounts to Rs. $121$ at the annual compount rate of $r\%$. The value of $r$ will be

  1. $9$

  2. $10$

  3. $\displaystyle \frac{21}{2}$

  4. $11$


Correct Option: B
Explanation:

Given, Sum (P) = Rs. 100,
Amount due (A) = Rs. 121
Time (n) = 2 years, Rate (r) = ?
We know $A = P \displaystyle \left ( 1 + \frac{r}{100} \right )$
$\therefore 121 = 100 \displaystyle \left ( 1 + \frac{r}{100} \right )^2$
or $\displaystyle \left ( 1 + \frac{r}{100} \right )^2 = \frac{121}{100}$
or $\displaystyle 1 + \frac{r}{100} = \frac{11}{10} = 1 + \frac{1}{10} = 1 + \frac{10}{100}$
$\therefore r = 10$%

Rajan lent Rs. $1200$ to Rakesh for $3$ years at a certain rate of interest and Rs. $1000$ to Mukesh for the same time at the same rate. If he gets Rs. $50$ more from Rakesh than from Mukesh, then the rate percent

  1. $ 8 \displaystyle \frac{1}{3}\%$ 

  2. $ 6 \displaystyle \frac{2}{3}\%$ 

  3. $ 10 \displaystyle \frac{1}{3}\%$ 

  4. $ 9 \displaystyle \frac{2}{3}\%$ 


Correct Option: A
Explanation:

$\displaystyle \frac{1200 \times R \times 3}{100} - \frac{1000 \times R \times 3}{100} = 50$
or $6 R = 50$
or $R = \displaystyle 8 \frac{1}{3}$%

A sum of Rs. $1000$ is lent to be returned in $11$ monthly installments of Rs. $100$ each, interest being simple. The rate of interest

  1. 9$\displaystyle \frac{1}{11}\%$

  2. $10\%$

  3. $11\%$

  4. $21\displaystyle \frac{9}{11}\%$


Correct Option: D
Explanation:

Rs. 1000 + S.l. on Rs. 1000 for 11 months = Rs. 1000 + S.I. on Rs. 100 for (1 + 2 + 3 + 4 + ... + 10) months Rs. 1000 S.I. on Rs. 100 for 100 months 
= Rs.1000 + S.l. on Rs. 100 for 55 months
S.l. on Rs. 100 for 55 months = Rs. 100
$\therefore Rate = \displaystyle \left ( \frac{100 \times 100 \times 12}{100 \times 55} \right )$% $21 \displaystyle \frac{9}{11}$%

A sum of money at compound interest amounts to Rs. $10580$ in $2$ years and to Rs. $12167$ in $3$ years. The rate of interest per annum is

  1. $12\%$

  2. $14\%$

  3. $15\%$

  4. $\displaystyle 16 \frac{2}{3}$%


Correct Option: C
Explanation:

Interest on Rs. 10580 for 1 year = Rs. (12167 - 10580) = Rs. 1587
$\therefore Rate = \displaystyle \left ( \frac{100 \times 1587}{10580} \right )$% = 15%

The compound interest on a sum of money for two years is Rs 52 and the simple interest for two years at the same rate is Rs 50. Then the rate of interest is

  1. 6%

  2. 8%

  3. 9%

  4. 10%


Correct Option: B
Explanation:

Given,
Simple Interest for two years is 50
$\frac { P\times T\times R }{ 100 } =Simple\quad Interest$
$\frac { P\times 2\times R }{ 100 } =50$
 $PR=2500$
 $P=\frac { 2500 }{ R } $................EQ(1)
Compound Interest for two years will be 52
$P{ { { \left( 1+\frac { r }{ 100 }  \right)  }^{ 2 } } }-P=52$
$\Rightarrow P\left( 1+\frac { 2R }{ 100 } +\frac { { R }^{ 2 } }{ 10000 } -1 \right) =52$
 $\Rightarrow P\left( \frac { 2R }{ 100 } +\frac { { R }^{ 2 } }{ 10000 }  \right) =52$
$\Rightarrow P\left( \frac { 200R+{ R }^{ 2 } }{ 10000 }  \right) =52$
$\Rightarrow P\left( \frac { 200R+{ R }^{ 2 } }{ 10000 }  \right) =52$
$\Rightarrow P\left( 200R+{ R }^{ 2 } \right) =520000$
$\Rightarrow 200R+{ R }^{ 2 }=\frac { 520000 }{ P } $
 $\Rightarrow 200R+{ R }^{ 2 }=520000\times \frac { R }{ 2500 } $(TAKING EQUATION FROM SIMPLE INTEREST EQ(1))
 $\Rightarrow 200R+{ R }^{ 2 }=208R$
$\Rightarrow { R }^{ 2 }=(208R-200R)$
 $\Rightarrow { { R }^{ 2 } }=8R$
 $R=8$
Rate will be 8%

The difference between the C.I. and S.I. on a sum of 7200 for two years is 72. Find the rate of interest per annum.

  1. $10\%$

  2. $12\%$

  3. $15\%$

  4. $20\%$


Correct Option: A
Explanation:

Simple Interest $ SI = \dfrac {PNR}{100} $


So, $ SI = \dfrac {7200 \times 2 \times R}{100} = Rs 144R $

When interest is compounded, Amount $ A = P(1+ \dfrac {R}{100})^n $

So, A $ = 7200 \times (1+ \dfrac {R}{100})^2 = Rs  7200 \times (1+ \dfrac {R^2}{10000} + \dfrac {2R}{100})  = Rs 7200 + Rs 0.72R^2 + Rs 144R  $

And $ CI = A - P = Rs 0.72R^2 + Rs 144R $

Si, difference $ CI - SI =  Rs 0.72R^2 + Rs 144R - Rs 144R =  Rs  72 $

$0.72R^2 = 72 $

$R^2 = 100 $ 

So, $ R = 10 $ %

A sum is invested at compound interest compounded yearly. If the interest for two successive years be Rs. 5,700 and Rs. 7,410 calculate the rate of interest.

  1. $30\%$

  2. $35\%$

  3. $29\%$

  4. $25\%$


Correct Option: A
Explanation:

Difference between the C.I of two successive years=$7410-5700=Rs. 1710$


Rate of interest$=\dfrac{Difference  \ between \ the  \ C.I  \ of \ two \ successive \ year \times100 }{C.I \ of \ preceding   \ year\times time}$


$\therefore$Rate of intereast=$\dfrac{1710\times 100}{5700\times 1}=30$%  

A sum of money placed out at compound interest amounts to Rs. 20,160 in 3 years and to Rs. 24,192 in 4 years. Calculate the rate of interest.

  1. 12%

  2. 15%

  3. 20%

  4. 25%


Correct Option: C
Explanation:

Amount in three year $=Rs. 20160$


Amount in four year $=Rs.24192$

Interest in 1 year $=24192-20160=Rs.4032$

Let the rate of interest $=R$%

C.I fir 1 year=S.I for 1 year$=\dfrac{PRT}{100}$

$\Rightarrow 4032=\dfrac{20160\times R\times 1}{100}$

$\Rightarrow R=\dfrac{4032\times 100}{20160\times 1}=20$%

The compouned interest, calculate yearly, on a certain sum of money for the second year is Rs. 1,089 and for the third year it is Rs. 1,197.90. Calculate the rate of interest and the sum of money 

  1. 11%, Rs. 800

  2. 12%, Rs. 400

  3. 13%, Rs. 700

  4. None of these


Correct Option: D
Explanation:

Sum after 2 years=Rs.1089

Sum after 3 years=Rs.1197.90
Interest for onr year$=1197.90-1089=108.90$
C.I for 1 year=S.I for 1 year 
$Interest=\frac{PRT}{100}$
$\Rightarrow 108.90=\frac{1089\times R\times 1}{100}$
$\Rightarrow R=\frac{108.90\times 100}{1089}=10$%

Let the sum=Rs.x
Amount=Rs. 1089,Time 2 years,R=10%
$Amount=P\left(1+\frac{R}{100}\right)^t$
$\Rightarrow 1089=x\left(1+\frac{10}{100}\right)^2$
$\Rightarrow 1089=x\times \frac{110}{100}\times \frac{110}{100}$
$\Rightarrow x=\frac{1089\times 100\times 100}{110\times 110}=Rs.900$