Tag: midpoints

Questions Related to midpoints

The locus of the mid point of the portion intercepted between the axes by the line $x{\,}cos\alpha+y{\,}sin{\,} \alpha=p$, where $p\inR$, is

  1. $x^2+y^2=\dfrac{4}{p^2}$

  2. $\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{4}{p^2}$

  3. $\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{4}{p^2}$

  4. $\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{2}{p^2}$


Correct Option: A

Locus of the midpoints of the intercepts between the co-ordinate Axes by the lines passing through (a, 0) does not intersect

  1. X axis

  2. Y axis

  3. Y=x

  4. Y=a


Correct Option: A

If the $1st$ point of trisection of AB is $(t, 2t)$ and the ends A, B move on $x$ and $y$ axis respectfully, then the focus of midpoint of AB is 

  1. $x=y$

  2. $2x= y$

  3. $4x= y$

  4. $x= 4y$


Correct Option: C

I every points on the line $(a _{1}-a _{2})x+(b _{1}-b _{2}),y=c$ is equidistance from the points $(a _{1},b _{1})$  and $(a _{2},b _{2})$ then $2c=$  

  1. $a _{1}^{2}-b _{1}^{2}+a _{2}^{2}-b _{2}^{2}$

  2. $a _{1}^{2}+b _{1}^{2}+a _{2}^{2}+b _{2}^{2}$

  3. $a _{1}^{2}+b _{1}^{2}-a _{2}^{2}-b _{2}^{2}$

  4. $None\ of\ these$


Correct Option: B

The line equally inclined to the coordinates axes and equidistant from points A(1, -2) and B(3, 4) is

  1. x+y=2, x+y=3

  2. x-y=3, x-y=1

  3. x-y=1, x+y=3

  4. x+y=2, x-y=3


Correct Option: A

Let $O$ be the origin and $A$ be a point on the curve $y^{2}=4x$. then locus of midpoint of $OA$ is 

  1. $x^{2}=4y$

  2. $x^{2}=4y$

  3. $y^{2}=16x$

  4. $y^{2}=2x$


Correct Option: A

The midpoint of the interval in which $x^{2}-2(\sqrt{-x})^{2}-3<0$ is satisfied, is

  1. $\dfrac{-3}{2}$

  2. $-2$

  3. $\dfrac{1}{2}$

  4. $\dfrac{-3}{4}$


Correct Option: A

A tangent to the circle $x^{2}+y^{2}=a^{2}$ meets the axes at points A and B. The locus of the mid point of AB is 

  1. $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{1}{a^{2}}$

  2. $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{4}{a^{2}}$

  3. $\frac{1}{x^{2}}+\frac{1}{y^{2}}=4a^{2}$

  4. $\frac{1}{x^{2}}+\frac{1}{y^{2}}=\frac{a^{2}}{4}$


Correct Option: A

If $A=(1, 2, 3)$ and $B(3, 5, 7)$ and P, Q are the points on AB such that AP$=$PQ$\neq$QB, then the mid point of PQ is?

  1. $(2, 3, 5)$

  2. $\left(2, \dfrac{7}{2}, 5\right)$

  3. $(2, 4, 5)$

  4. $(4, 7, 0)$


Correct Option: A

The locus of the mid-point of a chord of the circle ${ x }^{ 2 }+{ y }^{ 2 }=4$ which subtends a right angle at the origin, is

  1. $x + y = 2$

  2. $x^2 + y^2 = 1$

  3. $x^2 + y^2 = 2$

  4. $x + y = 1$


Correct Option: A