Tag: division of a line segment

Questions Related to division of a line segment

If $(2, 3), (-4, 5), (1, -2)$ are the midpoints of the sides $\vec{BC}, \vec{CA}, \vec{AB}$ of $\triangle ABC$, then the equation of $\vec{AB}$ is 

  1. $3x-y-5=0$

  2. $x+3y+5=0$

  3. $x+3y-11=0$

  4. $3x-y+17=0$


Correct Option: A

The point on $X-axis$ equidistant from $(2,3)$and $(1,5)$ is

  1. $\left( \dfrac { -13 }{ 2 } ,0 \right) $

  2. $\left( \dfrac { 13 }{ 2 } ,0 \right) $

  3. $(13,0)$

  4. $none\ of\ these$


Correct Option: A

Let ${P} _{1}$ and ${P} _{2}$ be two fixed points in $xy-plane$. A line ${L} _{1}=0$ passes through ${P} _{1}$ intersects $y-axis$ at $B$ and the line ${L} _{2}=0$ passes through ${P} _{2}$ and intersects $x-axis$ at $A$. If ${L} _{1}=0$ and ${L} _{2}=0$ are perpendicular then the locus of mid-point of$AB$ is

  1. $Straight line$

  2. $Circle$

  3. $Ellipse$

  4. $Parabola$


Correct Option: A

The point which is equidistant from the points $(-1,1,3),(2,1,2),(0,5,6)$ and $(3,2,2)$ is

  1. $(-1,3,4)$

  2. $(3,1,4)$

  3. $(1,3,4)$

  4. $(4,1,3)$4


Correct Option: A

The point (5,0) on y-axis is equidistant from (-1,2) and (3,4).

  1. True

  2. False


Correct Option: A

The co-ordinates of the mid point joining the points $(sin^2 \theta, sec^2 \theta )$ and $(cos^2 \theta - tan^2 \theta)$ is

  1. $(2,1)$

  2. $(\dfrac{-1}{2}, \dfrac{1}{2})$

  3. $(1,1)$

  4. $(\dfrac{1}{2}, \dfrac{1}{2})$


Correct Option: A

The point on $X$-axis which is equidistant from the point $\left( 3,5 \right )$ and $\left( 4,2 \right )$ is 

  1. $\left( -6,0 \right )$

  2. $\left( -7,0 \right )$

  3. $\left( 7,0 \right )$

  4. $\left( -5,0 \right )$


Correct Option: A

Let P be the point (1, 0) and Q a point on the curve ${ y }^{ 2 }=8x$. The locus of mid point of PQ is-

  1. ${ y }^{ 2 }-4x+2=0$

  2. ${ y }^{ 2 }+4x+2=0$

  3. ${ x }^{ 2 }+4y+2=0$

  4. ${ x }^{ 2 }-4y+2=0$


Correct Option: A
Explanation:

$P=(1,0), Q=(h,k)$


$k^2=8h$


Let $(\alpha, \beta)$ be the mid-point of PQ.

$\alpha =\dfrac{h+1}{2}, \beta =\dfrac{k+0}{2}$

$2\alpha-1=h, 2\beta=k$

$(2\beta)^2=8(2\alpha-1)$

$\beta^2=4\alpha-2$

$\implies y^2-4x+2=0$

The co -ordinates of the midpoint of a line segment joining $ p(5,7) $ and $ Q (-3,3) $ are........

  1. $ (2,4) $

  2. $ (1,5 ) $

  3. $ (4,2 ) $

  4. $ (2,5 ) $


Correct Option: B
Explanation:
Given,

$P(5,7),Q(-3,3)$

mid point is given by,

$(x,y)=\left ( \dfrac{5-3}{2},\dfrac{7+3}{2} \right )$

$\Rightarrow (x,y)=(1,5)$

If Q is a variable point on $x^2=4y$ and O is the origin, the locus of mid point OQ is equation of 

  1. an ellipse

  2. a parabola

  3. hyperbola

  4. None of these


Correct Option: A