Tag: multiplication of a fractions

Questions Related to multiplication of a fractions

Reciprocal of $\displaystyle \frac{7}{5}$

  1. $\displaystyle 1\frac{2}{5}$

  2. $\displaystyle \frac{5}{7}$

  3. $\displaystyle 5\frac{2}{3}$

  4. $\displaystyle \frac{12}{5}$


Correct Option: B
Explanation:
In the reciprocal, numerator and denominator interchanges
So, the reciprocal of $\dfrac{7}{5}$ is $\dfrac{5}{7}$.
Hence, the answer is $\dfrac{5}{7}$.

$\displaystyle \frac{1}{9}$ of ___ $= 5$

  1. $5$

  2. $9$

  3. $14$

  4. $45$


Correct Option: D
Explanation:

$\dfrac{1}{9}$ of $45=5$ because $45$ is divided by $9$ in $5$ times.

Hence, the answer is $45$.

Find the product:

$\displaystyle 1\frac{1}{3}\times 3\frac{1}{4}\times \frac{7}{8}$

  1. $\displaystyle 3\frac{18}{24}$

  2. $\displaystyle 2\frac{19}{24}$

  3. $\displaystyle 3\frac{19}{24}$

  4. $\displaystyle 2\frac{18}{24}$


Correct Option: C
Explanation:

Let's first convert the mixed fraction into simple fraction $\dfrac{4}{3},$ $\dfrac{13}{4},$ $\dfrac{7}{8}$ .

The product is 
$\dfrac{4}{3} \times \dfrac{13}{4}\times \dfrac{7}{8}=\dfrac{91}{24}$
This can also be written as $3\dfrac{19}{24}$.

If $\displaystyle 40-\frac{1}{5}\times $ ____ $= 0$, then the missing value is 

  1. $0$

  2. $\displaystyle \frac{1}{5} $

  3. $\displaystyle \frac{199}{5} $

  4. $200$


Correct Option: D
Explanation:
Let missing value is $x$

$40$ $-\dfrac{1}{5}\times x=0$

$40$ $=\dfrac{1}{5}\times x$

$x=200$

Hence, the answer is $200$.

If the reciprocal of $y - 1$ is $y + 1$, then $y$ equals

  1. $-1$

  2. $+1$

  3. $0$

  4. $\pm$ 1

  5. none of these


Correct Option: E
Explanation:

Reciprocal of $y-1$ is $\dfrac{1}{y-1} = y+1$, so we get ${y}^{2}-1=1$
Which implies $y = \pm \sqrt2$
So, the correct option is $E$.

Which point on the number line most likely represent $-2\cfrac { 5 }{ 8 } $?

  1. On the left of $-3$

  2. On the right of $-2$

  3. Between $-2$ and $-3$

  4. In the middle of $-2$ and $-3$


Correct Option: C
Explanation:
$-2\cfrac { 5 }{ 8 } $

$-2\cfrac { 5 }{ 8 } =(-1)2\cfrac { 5 }{ 8 } $

$=-1\times \cfrac { 21 }{ 8 } $

$=-2.625$

It lies in between $-3$ and $-2$