Tag: multiplication of fraction

Questions Related to multiplication of fraction

If a man spends $\displaystyle \frac{5}{6}$ th part of money and then earns $\displaystyle \frac{1}{62}$ part of the remaining money, what part of his money is with him now?

  1. $\displaystyle Rs\frac{1}{4}$

  2. $\displaystyle Rs\frac{3}{4}$

  3. $\displaystyle Rs\frac{5}{4}$

  4. $\displaystyle Rs\frac{1}{5}$


Correct Option: A
Explanation:

Let the money with the man at first be Rs 1
$\displaystyle \therefore $ Money spent=$\displaystyle \frac{5}{6}of Rs1=Rs\frac{5}{6}$
Remaining money=$\displaystyle =1-\frac{5}{6}=Rs\frac{1}{6}$
Money earned$\displaystyle =\frac{1}{2}=Rs\frac{1}{6}=Rs \frac{1}{12}$
$\displaystyle \therefore $ Total money with him now=Rs$\displaystyle \frac{1}{6}+Rs.\frac{1}{12}=Rs.\frac{3}{12}=Rs.\frac{1}{4}$
$\displaystyle \therefore \frac{1}{4}th$ part of the money is with him now

The value of $\displaystyle 15$ of $\cfrac{1}{5}$ is 

  1. $\displaystyle \frac{1}{75}$

  2. $\displaystyle \frac{151}{5}$

  3. $3$

  4. $-3$


Correct Option: C
Explanation:

$15$ of $\cfrac{1}{5}=15\times\cfrac{1}{5}=3$

Hence, option C is correct.

Reciprocal of $\displaystyle 3\frac{1}{2}$ is 

  1. $\displaystyle \frac{7}{2}$

  2. $\displaystyle \frac{2}{7}$

  3. $\displaystyle 1\frac{2}{3}$

  4. none


Correct Option: B
Explanation:

The reciprocal of a number is just divide 1 by the number.
$\therefore$ Reciprocal of $3\cfrac 12$ i.e $\cfrac 72$ is $\cfrac 27$
Option B is correct.

$\cfrac {4}{7}\times \cfrac {7}{4}\times 0=.......$

  1. $28$

  2. $1$

  3. $0$

  4. none


Correct Option: C
Explanation:

Any number multiplied with $0$ gives $0$. 

So, $\cfrac {4}{7}\times \cfrac {7}{4}\times 0=0$
Hence, correct answer is option C.

Find $x$ if $\left (\cfrac {1}{2}\times \cfrac {1}{3}\right )\times \cfrac {1}{4}= x \times \left (\cfrac {1}{3}\times \cfrac {1}{4}\right )$.

  1. 1

  2. $\dfrac {1}{5}$

  3. $\dfrac {1}{2}$

  4. $\dfrac {1}{3}$


Correct Option: C
Explanation:

The given question shows the associative property of multiplication i.e. 

$\left( a\times b \right) \times c=a\times \left( b\times c \right) $
$\left (\cfrac {1}{2}\times \cfrac {1}{3}\right )\times \cfrac {1}{4}= x \times \left (\cfrac {1}{3}\times \cfrac {1}{4}\right )$
Therefore, $x=\dfrac{1}{2}$
Hence, the correct answer is option C.

Product of $\displaystyle \frac {12}{24}$ and $\displaystyle \frac {36}{72}$ is

  1. $\displaystyle \frac {16}{24}$

  2. $\displaystyle \frac {3}{5}$

  3. $4$

  4. $\displaystyle \frac {1}{4}$


Correct Option: D
Explanation:

We need to find product of $\displaystyle \frac {12}{24}, \frac {36}{72}$


$\therefore \displaystyle \frac{12}{24} \times \frac{36}{72} = \frac{1}{2} \times \frac{1}{2} $

$=\displaystyle  \frac{1}{4}$

Reciprocal of $3\displaystyle \frac {1}{2}$ is

  1. $\displaystyle \frac {7}{2}$

  2. $\displaystyle \frac {2}{7}$

  3. $1\displaystyle \frac {2}{3}$

  4. None of these


Correct Option: B
Explanation:

$3\dfrac12=\dfrac {3\times 2+1}{2}=\dfrac72$


Hence reciprocal of $\dfrac 72=\dfrac 27$

If 0.111 is approximately equal to $\displaystyle\frac{1}{9}$ then the approximate value of 0.777 is

  1. $\displaystyle\frac{5}{9}$

  2. $\displaystyle\frac{7}{9}$

  3. $\displaystyle\frac{2}{9}$

  4. $\displaystyle\frac{1}{9}$


Correct Option: B
Explanation:

$0.0777\,=\,7\,\times\,0.111$
$=\,7\,\times\, \displaystyle\frac{1}{9}\,=\, \displaystyle\frac{7}{9}$

The product of two rational numbers $\displaystyle \frac{-9}{16}$. If one of the numbers is $\displaystyle \frac{-4}{3}$ then the other number is:

  1. $\displaystyle \frac{36}{48}$

  2. $\displaystyle \frac{25}{64}$

  3. $\displaystyle \frac{27}{49}$

  4. $\displaystyle \frac{27}{64}$


Correct Option: D
Explanation:
Let the required no. be $x$.
$\therefore x \times  {\cfrac{-4}{3} = \cfrac{-9}{16}}$
$\Rightarrow x =  {\cfrac{-9/16}{-4/3} = \cfrac{-9}{16} \times \cfrac{-3}{4} = \cfrac{27}{64}}$

The product of a rational number and its reciprocal is

  1. $0$

  2. $1$

  3. $-1$

  4. none


Correct Option: B
Explanation:

The product of rational number with its reciprocal is always equal to $1$.


Let's take an example,
Rational number $= \dfrac{2}{3}$
Its reciprocal $= \dfrac{3}{2}$

Product $= \dfrac{2\times3}{3\times2} = 1$