Tag: properties of irrational numbers

Questions Related to properties of irrational numbers

Which of the following numbers is different from others?

  1. $\sqrt{6}$

  2. $\sqrt{11}$

  3. $\sqrt{15}$

  4. $\sqrt{16}$


Correct Option: D
Explanation:

$16^{\frac{1}{2}}=4$, which is a rational number.
The other options are irrational  numbers.
So, $16^{\frac{1}{2}}$ is different from others.

If $a\neq 1$ and $ln{ a }^{ 2 }+{ \left( ln{ a }^{ 2 } \right)  }^{ 2 }+{ \left( ln{ a }^{ 2 } \right)  }^{ 3 }+........=3\left( lna+{ \left( ln{ a } \right)  }^{ 2 }+{ \left( ln{ a } \right)  }^{ 3 }+{ \left( ln{ a } \right)  }^{ 4 }+...... \right)$ then $a$ is

  1. $an\ irrational\ number$

  2. $a\ transcendental\ number$

  3. $an\ algeberaic\ number$

  4. $a\ surd$


Correct Option: A
Explanation:

Given, for $a\ne 1$,

$ln{ a }^{ 2 }+{ \left( ln{ a }^{ 2 } \right)  }^{ 2 }+{ \left( ln{ a }^{ 2 } \right)  }^{ 3 }+........=3\left( lna+{ \left( ln{ a } \right)  }^{ 2 }+{ \left( ln{ a } \right)  }^{ 3 }+{ \left( ln{ a } \right)  }^{ 4 }+...... \right)$
or, $\dfrac{\ln a^2}{1-\ln a^2}=3\times \dfrac{\ln a}{1-\ln a}$
or, $\dfrac{2\ln a}{1-2\ln a}=3\times \dfrac{\ln a}{1-\ln a}$
or, $2(1-\ln a)=3(1-2\ln a)$ [Since $a\ne 1\Rightarrow \ln a \ne 0$ ]
or, $4\ln a =1$
or, $a=\sqrt[4]{e}$.
So clearly $a$ is an irrational number.

Simplify the following expressions.
Classify the following numbers as rational or irrational.

  1. $\left( 5+\sqrt { 7 } \right) \left( 2+\sqrt { 5 } \right)$

  2. $\left( 5+\sqrt { 5 } \right) \left( 5-\sqrt { 5 } \right)$

  3. ${ \left( \sqrt { 3 } +\sqrt { 7 } \right) }^{ 2 }$

  4. $\left( \sqrt { 11 } -\sqrt { 7 } \right) \left( \sqrt { 11 } +\sqrt { 7 } \right)$


Correct Option: D
Explanation:

$A:$

$\left( {{\rm{5}} + \sqrt {\rm{7}} } \right)\left( {{\rm{2}} + \sqrt {\rm{5}} } \right)$  

$=10+5\sqrt5+2\sqrt7+\sqrt{35}$

Now, $10$ is rational and $\sqrt5,\sqrt7$ are non terminating , non repeating is an irrational 

and we know that $rational + irrational = irrational$ 

Therefore,  $\left( {{\rm{5}} + \sqrt {\rm{7}} } \right)\left( {{\rm{2}} + \sqrt {\rm{5}} } \right)$  is  irrational 


$B:$
$\left( {{\rm{5}} + \sqrt {\rm{5}} } \right)\left( {5 - \sqrt {\rm{5}} } \right)$

$={{\rm{5}}^2} + {\left( {\sqrt {\rm{5}} } \right)^2} = 25 - 5$

$=5$, which is rational 

So, $\left( {{\rm{5}} + \sqrt {\rm{5}} } \right)\left( {5 - \sqrt {\rm{5}} } \right)$
Is rational number.


$C:$
${\left( {\sqrt {\rm{3}}  + \sqrt {\rm{7}} } \right)^{\rm{2}}}$

$={\left( {\sqrt {\rm{3}} } \right)^2} + {\left( {\sqrt {\rm{7}} } \right)^2} + 2\sqrt {\rm{3}} \sqrt 7 $

$={\left( {\sqrt {\rm{3}} } \right)^2} + {\left( {\sqrt {\rm{7}} } \right)^2} + 2\sqrt {{\rm{21}}} =3 + 7 + 2\sqrt {{\rm{21}}} =10+2\sqrt{21}$
and $10$ and $\sqrt{21}$ are both rational.

Therefore, ${\left( {\sqrt {\rm{3}}  + \sqrt {\rm{7}} } \right)^{\rm{2}}}$ is rational.


$D:$
$\left( {{\rm{11}} - \sqrt {\rm{7}} } \right)\left( {{\rm{11 + }}\sqrt {\rm{7}} } \right)$

$={\left( {{\rm{11}}} \right)^2} - {\left( {\sqrt {\rm{7}} } \right)^2}$

$=11-7=4$, which is rational.

Therefore $\left( {{\rm{11}} - \sqrt {\rm{7}} } \right)\left( {{\rm{11 + }}\sqrt {\rm{7}} } \right)$ is rational.

Which of the following numbers are an irrational number. 

  1. $2- \sqrt 5$

  2. $\left( {3 + \sqrt {23} } \right) - \left( {\sqrt {23} } \right)$

  3. $\frac{1}{\sqrt 2}$

  4. $2\pi $


Correct Option: A,C,D
Explanation:

$A$ is a irrational number as it cannot be expressed of the form $\cfrac{p}{q}$

$B$ is a rational number. As it can be expressed in the form of $\cfrac{3}{1}$
$C$ is a irrational number as it cannot be expressed of the form $\cfrac{p}{q}$
$D$ is a irrational number as it cannot be expressed of the form $\cfrac{p}{q}$ of two integers

If $p$ and $q$ are two distinct irrational numbers, then which of the following is always is an irrational number

  1. $\dfrac{p}{q}$

  2. $pq$

  3. $(p+q)^2$

  4. $\dfrac{p^2q+qp}{pq}$


Correct Option: D
Explanation:

As, given $p$ and $q$ are two distinct irrational numbers.


Let $p=2+\sqrt 3$ and $q=2-\sqrt 3$

Then,

Option $A$
$\dfrac{p}{q}=\dfrac{2+\sqrt3}{2-\sqrt 3}$
$\dfrac{p}{q}=\dfrac{4+3+4\sqrt3}{4-3}=7+4\sqrt 3$

Option $B$
$pq=(2+\sqrt3)(2-\sqrt 3)=4-3=1$


Option $C$
$(p+q)^2=(2+\sqrt3+2-\sqrt 3)^2=4^2=16$

Option $D$
$\dfrac{p^2q+pq}{pq}=p+1$ is always an irrational number, because sum of rational and irrational is always irrational.

Hence, this is irrational.

Hence, this is the answer.

$\sqrt 7 $ is irrational.

  1. True

  2. False


Correct Option: A
Explanation:
Lets assume that √7 is rational number. ie √7 = p/q.
suppose p/q have common factor then
we divide by the common factor to get √7 = a/b were a and b are co-prime number.
that is a and b have no common factor.
√7 =  a/b co- prime number
√7 = a/b
a = √7b
squaring
a² = 7b²                                   ....(i)
a² is divisible by 7
a = 7c
substituting values in eq (i)
(7c)² = 7b²
49c² = 7b²
7c² = b²
b² = 7c²
b² is divisible by 7
that is a and b have at least one common factor 7. 
√7 is irrational
Say true or false:
$87, 54, 0, -13, -4.7, \sqrt{5}, 2{1}{7}, \sqrt{15}, -{8}{7}, 3\sqrt{2}, 4.807, 0.002, \sqrt{16}$ and $2+\sqrt{3}.$ are rational numbers
 
  1. True

  2. False


Correct Option: B
Explanation:

$\sqrt { 5 } ,\quad \sqrt { 15 } ,\quad 3\sqrt { 2 } ,\quad 2\quad +\sqrt { 3 } $ are irrational numbers as they cannot be expressed as a ratio.

Say True or False
$3+2\sqrt 5$ is an irrational number

  1. True

  2. False


Correct Option: A
Explanation:

Let us assume, to the contrary, that $3+2\sqrt{5}$ is rational.


That is, we can find coprime integers $a$ and $b$ $(b0)$ such that $3+2\sqrt{5}=\dfrac{a}{b}$.

Therefore, $\dfrac{a}{b} - 3=2\sqrt{5}$

$\dfrac{a-3b}{b}=2\sqrt{5}$

$\dfrac{a-3b}{2b}=\sqrt{5}$

$\dfrac{a}{2b}-\frac{3}{2}=\sqrt{5}$

Since $a$ and $b$ are integers, we get $\dfrac{a}{2b}-\dfrac{3}{2}$ is rational, and so $\dfrac{a-3b}{2b}=\sqrt{5}$ is rational.

But this contradicts the fact that $\sqrt{5}$ is irrational.

This contradiction has arisen because of our incorrect assumption that $3+2\sqrt{5}$ is rational.
So, we conclude that  $3+2\sqrt{5}$ is irrational.

Say true or false:$0.120 1200 12000 120000 $....is a rational number

  1. True

  2. False


Correct Option: B
Explanation:

Given, $0.120 1200 12000 120000 ....$
Since, the decimal expansion is neither terminating nor non-terminating repeating, therefore, the given real number is not rational.
they are not rational, so we can't write of the form $\displaystyle \frac {p}{q}$.

State True or False.

$\sqrt{4}$ is an irrational number.

  1. True

  2. False


Correct Option: B
Explanation:

$\sqrt { 4 } =2\ The\quad decimal\quad representation\quad is\quad terminating.\ Hence,\quad \sqrt { 4 } is\quad a\quad rational\quad number.\ \quad $