Tag: surds and law of surds

Questions Related to surds and law of surds

If $p=\sqrt{32}-\sqrt{24}$ and $q=\sqrt{50}-\sqrt{48}$

  1. $p< q$

  2. $p> q$

  3. $p=q$

  4. $p\leq q$


Correct Option: B
Explanation:

(B) $\frac{p}{q}=\frac{\sqrt{32}-\sqrt{24}}{\sqrt{50}-\sqrt{48}}\times \frac{\sqrt{50}+\sqrt{48}}{\sqrt{50}+\sqrt{48}}$

$=\frac{(4\sqrt{2}-2\sqrt{6})(5\sqrt{2}+4\sqrt{3})}{2}$

$=(2\sqrt{2}-\sqrt{6})(5\sqrt{2}+4\sqrt{3})> 1$

$\therefore p> q$

If $x=\sqrt{2}+1,    y=\sqrt{17}-\sqrt{2}$, then:

  1. $x< y$

  2. $x > y$

  3. $x=y$

  4. $x\geq y$


Correct Option: A
Explanation:

(A) Given, $x=\sqrt{2}+1$ and $y=\sqrt{17}-\sqrt{2}$

$\dfrac{x}{y}=\dfrac{\sqrt{2}+1}{\sqrt{17}-\sqrt{2}}\times \dfrac{\sqrt{17}+\sqrt{2}}{\sqrt{17}+\sqrt{2}}$

$=\dfrac{(\sqrt{2}+1)(\sqrt{17}+\sqrt{2})}{17-2}$

$=\dfrac{(\sqrt{2}+1)(\sqrt{17}+\sqrt{2})}{15}< 1$

$\therefore x< y$

Arrange the following in ascending order of magnitude: $\displaystyle \sqrt[4]{90}, \sqrt[3]{10}, \sqrt{6}$

  1. $\displaystyle \sqrt{3} < \sqrt[4]{10} < \sqrt[3]{6}$

  2. $\displaystyle \sqrt{3} > \sqrt[4]{10} > \sqrt[3]{6}$

  3. $\displaystyle \sqrt{3} > \sqrt[4]{10} < \sqrt[3]{6}$

  4. $\displaystyle \sqrt{3} < \sqrt[4]{10} > \sqrt[3]{6}$


Correct Option: A

$if\,A\, = \sqrt 7  - \sqrt 6 \,and\,B = \,\sqrt 6  - \sqrt {5,} \,then\,$

  1. $A > B$

  2. $A = B$

  3. $A < B\,$

  4. $A \geqslant B$


Correct Option: C
Explanation:
Given numbers are $A=\sqrt{7}-\sqrt{6}$ and $B=\sqrt{6}- \sqrt{5}$
Let $x =\sqrt{5}$ and $y= \sqrt{7}$ then by
$A.M$ and $G.M$
$\dfrac{x+y}{2} \le \sqrt{\dfrac{x^{2}+y^{2}}{2}}$
$\Rightarrow \dfrac{\sqrt{5}+ \sqrt{7}}{2} \le \sqrt{6}$
$\Rightarrow \sqrt{5}+ \sqrt{7} \le 2 \sqrt{6}$
$\Rightarrow \sqrt{7}- \sqrt{6} \le \sqrt{6} - \sqrt{5}$

Which of the following numbers is the least ?
$\displaystyle (0.5)^{2},\sqrt{0.49},\sqrt[3]{0.008},0.23$

  1. $\displaystyle (0.5)^{2}$

  2. $\displaystyle \sqrt{0.49}$

  3. $\displaystyle \sqrt[3]{0.008}$

  4. 0.23


Correct Option: C
Explanation:

$ (0.5)^{2}=0.25$
$\sqrt{0.49}=0.7;$
$ \sqrt[3]{0.008}=\sqrt[3]{.2^3}=0.2$
$0.23$
Arranging in ascending order the numbers are $0.2< 0.23< 0.25< 0.7$
$ \therefore \sqrt[3]{0.008}=0.2$ is the least

The greatest number among $\displaystyle \sqrt[3]{2},\sqrt{3},\sqrt[3]{5}$ and $1.5$ is 

  1. $\displaystyle \sqrt[3]{2}$

  2. $\displaystyle \sqrt{3}$

  3. $\displaystyle \sqrt[3]{5}$

  4. $1.5$


Correct Option: B
Explanation:

LCM of $3, 2 = 6$
Given numbers are $ \sqrt[3]{2},\sqrt{3},\sqrt[3]{5}, 1.5$ i.e,
$ 2^{1/3},3^{1/2},5^{1/3},1.5$
$ \therefore $ Raising each number to power $6$, we get
$ (2^{1/3})^{6},(3^{1/2})^{6},(5^{1/3})^{6}, (1.5)^{6}$

$= 2^{2},3^{3},5^{2}, \left(\cfrac{3}{2}\right)^{6}$
$=4,27,25,\cfrac{729}{64}$
Of all these numbers, $27$ is the greatest.
$ \Rightarrow \sqrt{3}$ is the greatest. 

The smallest of $\displaystyle \sqrt{8}+\sqrt{5},\sqrt{7}+\sqrt{6},\sqrt{10}+\sqrt{3}$ and $\displaystyle \sqrt{11}+\sqrt{2}$ is 

  1. $\displaystyle \sqrt{8}+\sqrt{5}$

  2. $\displaystyle \sqrt{7}+\sqrt{6}$

  3. $\displaystyle \sqrt{10}+\sqrt{3}$

  4. $\displaystyle \sqrt{11}+\sqrt{2}$


Correct Option: D
Explanation:

$\displaystyle \sqrt{8}+\sqrt{5}=2.83+2.24=5.07$
$\displaystyle \sqrt{7}+\sqrt{6}=2.65+2.45=5.09$
$\displaystyle \sqrt{10}+\sqrt{13}=3.16+3.61=6.77$
$\displaystyle \sqrt{11}+\sqrt{12}=3.32+1.41=4.73$
$\displaystyle \therefore $ Smallest is $\displaystyle \sqrt{11}+\sqrt{2}$

Which one of the following set of surds is correct sequence of ascending order of their values?

  1. $\displaystyle \sqrt[4]{10},\sqrt[3]{6},\sqrt{3}$

  2. $\displaystyle \sqrt{3},\sqrt[4]{10},\sqrt[3]{6},$

  3. $\displaystyle \sqrt{3},\sqrt{10},\sqrt[3]{6},$

  4. $\displaystyle \sqrt[4]{10},\sqrt{3},\sqrt[3]{6}$


Correct Option: B
Explanation:

$\sqrt[4]{10},\sqrt[3]{6},\sqrt{3}$
The order of the given irrational numbers are 2,3,4.
LCM of (2,3,4)=12
Now convert each irrational number as of order 12
$\sqrt[4]{10}=\sqrt[12]{10^3}=\sqrt[12]{1000}$
$\sqrt[3]{6}=\sqrt[12]{6^4}=\sqrt[12]{1296}$
$\sqrt{3}=\sqrt[12]{3^6}=\sqrt[12]{729}$
Hence, ascending order$\sqrt{3}<\sqrt[4]{10}<\sqrt[3]{6}$

Which is the greatest out of the following ?

  1. $\displaystyle \sqrt[3]{1.728}$

  2. $\displaystyle \frac{\sqrt{3}-1}{\sqrt{3}+1}$

  3. $\displaystyle \left ( \frac{1}{2} \right )^{-2}$

  4. $\displaystyle \frac{17}{8}$


Correct Option: C
Explanation:
$\Rightarrow  \sqrt[3]{1.728}=1.2$

$\Rightarrow \cfrac{\sqrt{3}-1}{\sqrt{3}+1}=\cfrac{(\sqrt{3}-1)^{2}}{(\sqrt{3}+1)(\sqrt{3}-1)}=\cfrac{3+1-2\sqrt{3}}{3-1}$
$ =\cfrac{4-2\sqrt{3}}{2}=2-\sqrt{3}$
$ =2-1.732=0.268$

$\Rightarrow \left ( \cfrac{1}{2} \right )^{-2}=2^{2}=4$

$\Rightarrow \cfrac{17}{8}=2.2125$

$ \therefore \left ( \cfrac{1}{2} \right )^{-2}$ is the greatest. 

$4\sqrt{18}$ $=$ $12\sqrt{2}$
State true or false

  1. True

  2. False


Correct Option: A
Explanation:

Consider $4\sqrt { 18 }$ and factorize it as follows:

 
$4\sqrt { 18 } =4\sqrt { 2\times 3\times 3 } =4\sqrt { 2\times 3^{ 2 } } =4\times 3\sqrt { 2 } =12\sqrt { 2 }$
 
Hence, $4\sqrt { 18 } =12\sqrt { 2 }$