Tag: composition of ratios

Questions Related to composition of ratios

Find the compounded ratio of $18 : 9, 16 : 13$ and $6 : 9$

  1. $3 : 17$

  2. $5 : 8$

  3. $3 : 5$

  4. $64 : 39$


Correct Option: D
Explanation:

By the defination of compound ratio $18 : 9, 16 : 13$ and $6 : 9$ can be expressed as
$\dfrac {18}{9}\times \dfrac {16}{13}\times \dfrac {6}{9} = \dfrac {64}{39}$
Hence $64 : 39$

Find the compounded ratio of $2 : 3$ and $5 : 7$

  1. $14 : 15$

  2. $6 : 35$

  3. $41 : 32$

  4. $10 : 21$


Correct Option: D
Explanation:

By the defination of compound ratio $2 : 3$ and $5 : 7$ can be expressed as
$\dfrac {2}{3}\times \dfrac {5}{7} = \dfrac {10}{21}$
Hence $10 : 21$

What is the compounded ratio of $10 : 30$ and $60 : 80$

  1. $5 : 12$

  2. $12 : 9$

  3. $1 : 4$

  4. $5 : 8$


Correct Option: C
Explanation:

By the defination of compound ratio $10 : 30$ and $60 : 80$
$\dfrac {10}{30}\times \dfrac {60}{80} = \dfrac {1}{4}$
Hence $1 : 4$.

_____ is the duplicate ratio of $3a : 4b$

  1. $9a : 16b$

  2. $\sqrt {3a} : \sqrt {4b}$

  3. $3a^{2} : 4b^{2}$

  4. $9a^{2} : 16b^{2}$


Correct Option: D
Explanation:

The duplicate ratio of $a : b$ is $b : a$
$\therefore$ The duplicate ratio of $3a : 4b$ is $(3a)^{2} : (4b)^{2} = 9a^{2} : 16b^{2}$

_____ is the duplicate ratio of $\sqrt {2} : \sqrt {3}$

  1. $\sqrt {3} : \sqrt {2}$

  2. $4 : 9$

  3. $2 : 3$

  4. $\sqrt {6} : \sqrt {3}$


Correct Option: C
Explanation:

The duplicate ratio of $a : b$ is $b : a$
$\therefore$ The duplicate ratio of $\sqrt {2} : \sqrt {3}$ is $(\sqrt {2})^{2} : (\sqrt {3})^{2} = 2 : 3$

______ is the duplicate ratio of $5 : 7$

  1. $25 : 49$

  2. $35 : 7$

  3. $\sqrt {5} : \sqrt {7}$

  4. $125 : 343$


Correct Option: A
Explanation:

The duplicate ratio of $a : b$ is $a^{2} : b^{2}$.
$\therefore$ The duplicate ratio of $5 : 7$ is $5^{2} : 7^{2} = 25 : 49$

_____ is the duplicate ratio of $\dfrac {x}{2} : \dfrac {y}{3}$

  1. $\dfrac {x}{4} : \dfrac {y}{9}$

  2. $\dfrac {x^{2}}{4} : \dfrac {y^{2}}{9}$

  3. $\dfrac {2}{x} : \dfrac {3}{y}$

  4. $\sqrt {\dfrac {x}{2}} : \sqrt {\dfrac {y}{3}}$


Correct Option: B
Explanation:

The duplicate ratio of $a : b$ is $b : a$
$\therefore$ The duplicate ratio of $\dfrac {x}{2} : \dfrac {y}{3}$ is $\left (\dfrac {x}{2}\right )^{2} : \left (\dfrac {y}{3}\right )^{2} = \dfrac {x^{2}}{4} : \dfrac {y^{2}}{9}$

The triplicate ratio of $2 : 5$ is ____

  1. $8 : 125$

  2. $4 : 25$

  3. $\sqrt [3]{2} : \sqrt [3]{5}$

  4. $5 : 2$


Correct Option: A
Explanation:

The triplicate ratio of $a : b$ is $a^{3} : b^{3}$
$\therefore$ The triplicate ratio of $2 : 5$ is $2^{3} : 5^{3} = 8 : 125$.

The duplicate ratio of $2\sqrt {2} : 3\sqrt {5}$ is _____

  1. $8 : 45$

  2. $16 : 250$

  3. $4 : 15$

  4. $16 : 45$


Correct Option: A
Explanation:

The duplicate ratio of $a : b$ is $a^{2} : b^{2}$
$\therefore$ The duplicate ratio of $2\sqrt {2} : 3\sqrt {5}$ is $(2\sqrt {2})^{2} : (3\sqrt {5})^{2} = 8 : 45$

What is the compound ratio of $\dfrac{6}{9}, \dfrac{15}{30}$ and $\dfrac{2}{6}$

  1. $\dfrac{1}{9}$

  2. $\dfrac{1}{3}$

  3. $\dfrac{5}{18}$

  4. $\dfrac{6}{13}$


Correct Option: A
Explanation:
let the $a=\dfrac{6}{9}  , b=\dfrac{15}{30} ,  c=\dfrac{2}{6}$
now,
$a\times b\times c=\dfrac{6\times 15\times 2}{9\times 30\times 6}=\dfrac{1}{9}$