Tag: poisson ratio

Questions Related to poisson ratio

A material has poisson's ratio $0.3$. If a uniform rod of it suffers a longitudinal strain of $25\times 10^{-3}$, then the percentage increase in its volume is

  1. $1\%$

  2. $2\%$

  3. $3\%$

  4. $4\%$


Correct Option: C

The Young's modulus of the material of a wire is $6\times 10^{12}$$N/m^{2}$ and there is no transverse in it, then its modulus of rigidity will be 

  1. $3\times 10^{12}N/m^{2}$

  2. $2\times 10^{12}N/m^{2}$

  3. $ 10^{12}N/m^{2}$

  4. None of the above


Correct Option: A
Explanation:

Relation between young’s modulus and transverse strain is as follows:

$Y=2\eta \left( 1+\sigma  \right)$

Where, \[$\eta ]$is modulus of rigidity

And $\sigma $is transverse strain, $\sigma =0$

So,

$ Y=2\eta  $

$ \eta =\dfrac{Y}{2}=\dfrac{6\times {{10}^{12}}}{2}=3\times {{10}^{12}}\,N/{{m}^{2}} $

A cylinderical wire of radius $1 mm,$ length $1 m,$ Young's modulus = $2\times10^{11}N/m^2$, poisson's ratio $\mu =\pi/10$ is stretched by a force of $100N$. Its radius will become

  1. $0.99998 mm$

  2. $0.99999 mm$

  3. $0.99997 mm$

  4. $0.99995 mm$


Correct Option: C

A material has Poisson's ratio $0.5$. If a uniform rod of it suffers a longitudinal strain of $3\times 10^{-3}$, what will be percentage increase in volume?

  1. $2\%$

  2. $3\%$

  3. $5\%$

  4. $0\%$


Correct Option: D

The poisson's ratio can not be

  1. $-1$

  2. $0$

  3. $0.25$

  4. $0.5$


Correct Option: C

A cube of wood supporting $200 gm$ mass just in water $(\rho =1g/cc)$. When the mass is removed, the cube rises by $2cm$. The volume of cube is

  1. $1000 cc$

  2. $800cc$

  3. $500 cc$

  4. None of these


Correct Option: D
Explanation:
Let the edge of cube be $L$ when mass is on the cube of wood 
$200g+{ L }^{ 3 }{ d } _{ wood }g={ L }^{ 3 }{ d } _{ water }g$
$\Rightarrow { L }^{ 3 }{ d } _{ wood }g={ L }^{ 3 }{ d } _{ water }g$
$\Rightarrow { L }^{ 3 }{ d } _{ wood }g={ L }^{ 3 }{ d } _{ water }g-200g$
$\Rightarrow { L }^{ 3 }{ d } _{ wood }={ L }^{ 3 }d-200$
When mass is removed
${ L }^{ 3 }{ d } _{ wood }-\left( L-2 \right) { L }^{ 2 }{ d } _{ water }\quad \longrightarrow \left( 2 \right) $
From $(1)$ and $(2)$
${ L }^{ 3 }{ d } _{ water }-200=\left( L-2 \right) { L }^{ 2 }{ d } _{ water }$
But ${ d } _{ water }=1$
$\therefore$    ${ L }^{ 3 }-200={ L }^{ 2 }\left( L-2 \right) $
$\therefore$    $L=10cm$.

what is the ratio of Youngs modulus $E$ to shear modulus $G$ in terms of poissons ratio$?$

  1. $2\left( {1 + \mu } \right)$

  2. $2\left( {1 - \mu } \right)$

  3. $\frac{1}{2}\left( {1 - \mu } \right)$

  4. $\frac{1}{2}\left( {1 + \mu } \right)$


Correct Option: A
Explanation:

As we know$:-$

$G = \frac{E}{{2\left( {1 + \mu } \right)}}$ 
so this gives the ratio of $E$ to $G = 2\left( {1 + \mu } \right)$
Hence,
option $(A)$ is correct answer.

For a given material, the Young's modulus is 2.4 times its modulus of rigidity. Its Poisson's ratio is

  1. $0.2$

  2. $0.4$

  3. $1.2$

  4. $2.4$


Correct Option: A
Explanation:

$Y = 2\eta \left( {1 + \sigma } \right)$

But $Y = 2.4\eta $
$\therefore 2.4\eta  = 2\eta \left( {1 + \sigma } \right)$
$\left( {1 + \sigma } \right) = 1.2$
$\sigma  = 0.2$
Hence,
option $(A)$ is correct answer.

When a wire is stretched, its length increases by $0.3$% and the diameter decreases by $0.1$%. Poisson's ratio of the material of the wire is about   

  1. $0.03$

  2. $0.333$

  3. $0.15$

  4. $0.015$


Correct Option: C

If rigidity modulus is 2.6 times of youngs modulus then the value of poission's ratio is 

  1. 0.2

  2. 0.3

  3. 0.5

  4. 0.1


Correct Option: B