Tag: position of point wrt ellipse
Questions Related to position of point wrt ellipse
Let $5x^2+7y^2=140$, then $(3,-4)$ is:
Let $5x^2+7y^2=140$, then Position of $(4,-3)$ relative to the ellipse is
Let $\dfrac {(x-3) ^2}9+\dfrac {(y-4) ^2}{16}=1$ then $(3,4)$ is
Let $5x^2+7y^2=140$, then $(0,0)$ is:
Let $5x^2+7y^2=140$, then $(\sqrt {14},\sqrt {10})$ is:
If $P=(x, y), F _1=(3, 0), F _2=(-3, 0)$ and $ 16x^2+25y^2=400$, then $PF _1+PF _2$ equals
The position of the point $(1, 2)$ relative to the ellipse $2x^{2} + 7y^{2} = 20$ is
The minimum distance of origin from the curve $\frac{a^2}{x^2}+\frac{b^2}{y^2}=1$ is $(a>0,b>0)$
If $a$ and $c$ positive real number and the ellipse $\dfrac { { x }^{ 2 } }{ { 4c }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { c }^{ 2 } } =1$ has four distinet points in common with the circle ${ x }^{ 2 }+{ y }^{ 2 }=9{ a }^{ 2 }$, then
An ellipse is inscribed in a circle and a point within the circle is chosen at random. If the probability that this point lies outside the ellipse is $2/3$ then the eccentricity of the ellipse is: