Tag: arithmetic mean of ap

Questions Related to arithmetic mean of ap

The mean marks of $120$ students is $20$. It was later discovered that two marks were wrongly taken as $50$ and $80$ instead of $15$ and $18$. The correct mean of mark is

  1. $19.19$

  2. $19.17$

  3. $19.21$

  4. $19.14$


Correct Option: A

The Arithmetic mean of first $5$ whole numbers.

  1. $1$

  2. $2$

  3. $3$

  4. $5$


Correct Option: A

For a certain frequency table which has been partly reproduced here, the arithmetic mean was found to be Rs.28.07

Income (in Rs.) 15 20 25 30 35 40
Number of workers 8 12 ? 16 3 10

If he total number of workers is 75, then the missing frequencies are?

  1. 14, 15

  2. 15, 14

  3. 13, 16

  4. 12, 17


Correct Option: D

The antithetic mean of the masks is _________.

  1. 50.25

  2. 50.75

  3. 51.25

  4. 53.75


Correct Option: A

let a and b be the two different natural numbers whose harmonic mean is 10 then their arithmatic mean is ______.

  1. 12

  2. 15

  3. 16

  4. 18


Correct Option: A

If 25 is the arithmetic mean between x and 46, then find x.

  1. 2

  2. 4

  3. 8

  4. 16


Correct Option: B
Explanation:

Since $25$ is the arithmetic mean of $X$ and $46$, 

$\therefore 25=\displaystyle \frac{(X+46)}{2}$
$\therefore  X+46=50$
$\therefore  X=4$

The arithmetic mean of first ten natural numbers is

  1. $5.5$

  2. $6$

  3. $7.5$

  4. $10$


Correct Option: A
Explanation:

The arithmetic mean of first ten natural numbers is the average of these natural numbers.


$\therefore$ arithmetic mean

   $=\dfrac{1+2+3+4+5+6+7+8+9+10}{10}$

   $=\dfrac{n(\dfrac{n+1}{2})}{10}\,\,\,\,\,\,\,\rightarrow Here \,\boxed{n=10}$

   $=\dfrac{10\times \dfrac{11}{2}}{10}$ 

   $=\dfrac{11}{2}=\boxed{5.5}\rightarrow $ option -A

If AM between $\displaystyle p^{th}$ and $\displaystyle q^{th}$ terms of an AP be equal to the AM between $\displaystyle r^{th}$ and $\displaystyle s^{th}$ term of the AP, then $p + q$ is equal to

  1. $r + s$

  2. $\displaystyle \frac{r-s}{r+s}$

  3. $\displaystyle \frac{r+s}{r-s}$

  4. $r + s + 1$


Correct Option: A
Explanation:

We know A.P formula for nth terms with 'a' as the first term and 'd' as the common difference as shown below:


${ t } _{ n }=a+\left( n-1 \right) d$

Also AM is given between two numbers a and b. 
       $A=\dfrac { a+b }{ 2 } $

So arithmetic mean of pth and qth terms of AP is as shown below:

$=\dfrac { a+\left( p-1 \right) d+a+\left( q-1 \right) d }{ 2 } $

Similarly we can have AM of rth term and sth term of AP as shown below:

$=\dfrac { a+\left( r-1 \right) d+a+\left( s-1 \right) d }{ 2 } $

Applying the given conditions we get,

$\dfrac { a+\left( p-1 \right) d+a+\left( q-1 \right) d }{ 2 } =\dfrac { a+\left( r-1 \right) d+a+\left( s-1 \right) d }{ 2 } $

      $\dfrac { a+pd-d+a+qd-d }{ 2 } =\dfrac { a+rd-d+a+sd-d }{ 2 } $

$a+pd-d+a+qd-d=a+rd-d+a+sd-d$

         $2a+d\left( p+q \right) -2d=2a+d\left( r+s \right) -2d$

                           $d\left( p+q \right) =d\left( r+s \right) d$

                                 $p+q=r+s$ 

Hence option A is correct.

If $a+b+c+d+e+f=12$ then the maximum value of $ab+bc+cd+de+ef+fa$ is (a, b, c, d, e, f are non negative real numbers)
  1. $36$

  2. $24$

  3. $30$

  4. none of these


Correct Option: B
Explanation:
AM $\ge$ GM
$\cfrac { a+b+c+d+e+f }{ 6 } \ge { (abcdef) }^{ 1/6 }\\ { 2 }^{ 2 }\ge { (abcdef) }^{ 1/3 }\quad \quad \quad (1)\\ \cfrac { ab+bc+cd+de+ef+fa }{ 6 } \ge { (abcdef) }^{ 2/6 }\\ ab+bc+cd+de+ef+fa\ge 6{ (abcdef) }^{ 1/3 } \quad (2)$
Dividing $(2)$ by $(1)$
$ab+bc+cd+de+ef+fa \ge 24$

The arithmetic mean of 1, 2, 3, ..., n, is

  1. $\displaystyle \frac{n-1}{2}$

  2. $\displaystyle \frac{n+1}{2}$

  3. $\displaystyle \frac{n}{2}$

  4. $\displaystyle \frac{n}{2}+1$


Correct Option: B
Explanation:

$\Rightarrow$   We have the sequence, $1,2,3.......n$

$\Rightarrow$   This is an AP, with the initial term $a=1$ and the common difference $d=1$.
$\therefore$   The sum of $n$ terms of an AP is given by,
$\Rightarrow$  $S _n=\dfrac{n}{2}[2a+(n-1)d]$

$\Rightarrow$  $S _n=\dfrac{n}{2}[2\times 1+(n-1)\times 1]$

$\Rightarrow$  $S _n=\dfrac{n}{2}[2+(n-1)]$

$\Rightarrow$  $S _n=\dfrac{n}{2}[n+1]$
$\rightarrow$   Arithmetic mean of $n$ numbers $a _1,a _2,a _3,a _4,... a _n$ is given by the formula
$\Rightarrow$  $Arithmetic\,mean=\dfrac{a _1+a _2+a _3+a _4+...+a _n}{n}$

$\Rightarrow$  $Arithmetic\,mean=\dfrac{S _n}{n}$

$\Rightarrow$  $Arithmetic\, mean=\dfrac{\dfrac{n}{2}[n+1]}{n}$

$\therefore$     $Arithmetic\, mean=\dfrac{n+1}{2}$