Tag: chemistry

Questions Related to chemistry

$\Delta G = \Delta G^{ \ominus } + RT log K$
  1. True

  2. False


Correct Option: A
Explanation:

As we know,
$\Delta G = \Delta H - T\Delta S$
Also, 
$\Delta G = \Delta G^{ \ominus } + RT log K$
and at equilibrium,
$\Delta G = 0$ so
$\Delta G^{ \ominus } = - RT log K$

For the reaction at $298 K$


$A (g) + B (g)\rightleftharpoons C (g) + D (g)$

$\Delta H^o = 29.8 kcal ; \Delta S^o = 0.1 kcal/K$

Calculate $\Delta G^o$ and $K$.

  1. $\Delta G^o = 0 ; K = 1$

  2. $\Delta G^o = 1 ; K = e$

  3. $\Delta G^o = 2 ; K = e^2$

  4. None of these


Correct Option: A
Explanation:

As we know,


$\Delta G^o = \Delta H^o - T\Delta S^o$ 

         $= 29.8 - ( 298\times0.1 )$

         $= 29.8-29.8=0$

Therefore, $\Delta G^o = 0$

The relation between $\Delta G^0 $ and $K$

$\Delta G^0$ = $ - RT lnK$

$K = 1 $

So, the correct option is $A$

When $\displaystyle \Delta G$ is zero :

  1. reaction moves in forward direction

  2. reaction moves in backward direction

  3. system is at equilibrium

  4. none of these


Correct Option: C
Explanation:

When $\displaystyle \Delta G$ is zero, system is at equilibrium.
Positive free energy change corresponds to non spontaneous reaction.
Negative free energy change corresponds to spontaneous reaction.

The density of an equilibrium mixture of $N _2O _4$ and $NO _2$ at 101.32 $KP _a$ is 3.62 g $dm^{3}$ at 288 K and 1.84 g $dm^{3}$ at 348 K. 


What is the heat of the reaction for the following reaction?

$N _2O _4\rightleftharpoons 2NO _2(g)$

  1. $\Delta _rH = 37.29 $  kJ mol$^{ -1 }$. 

  2. $\Delta _rH = 75.68 $  kJ mol$^{ -1 }$. 

  3. $\Delta _rH = 95.7$  kJ mol$^{ -1 }$. 

  4. $\Delta _rH = 151.3 $  kJ mol$^{ -1 }$. 


Correct Option: B
Explanation:

At 288 K, $M _{avg.}=\frac {3.62\times 0.0821\times 288}{1}$
$\frac {92}{M _{avg.}}=1+\alpha \Rightarrow K _{P1}=\frac {4\alpha^2}{1-\alpha^2}$
Similarly at $348 K, M'/avg.=\frac {1.84\times 0.0821\times 348}{1}$
$\frac {92}{M'avg}=1+\alpha'\Rightarrow K _{P _2}=\frac {4\alpha'^2}{1-\alpha'^2}$
$log \frac {K _{P _2}}{K _{P _1}}=\frac {\Delta H^o}{2.303 R}\left [\frac {1}{288}-\frac {1}{348}\right ]$
so,
$\Delta _rH = 75.68 kJ mol^{1}$

Which is not correct relationship between $\Delta G^{ \ominus }$ and equilibrium constant $K _P$

  1. $K _P = -RT log \Delta G^{ \ominus }$

  2. $K _P = [e/RT]^{ \Delta G^{ \ominus } }$

  3. $K _P = -\frac { \Delta G^{ \ominus } }{ RT }$

  4. $K _P = e^{ -\Delta G^{ \ominus }/RT }$


Correct Option: A,B,C
Explanation:

$\Delta G = \Delta G^{ \ominus } + RT log K$
and at equilibrium,
$\Delta G = 0$ so
$\Delta G^{ \ominus } = - RT log K$
$\Delta G^{ \ominus } = -RTln K _P$
$K _P = e^{ -\Delta G^{ \ominus }/RT }$

The correct relation between equilibrium constant $(K)$, standard free  energy $(\Delta {G}^{o})$ and temperature $(T)$ is:

  1. $\Delta {G}^{o}=RT\ln {K}$

  2. $K={ e }^{ \Delta { G }^{ o }/2.303 RT }\quad $

  3. $\Delta { G }^{ o }=-RT\log{K}$

  4. $K={ 10 }^{ -\Delta { G }^{ o }/2.303 RT }\quad $


Correct Option: D
Explanation:

Consider a reaction, $A+B\rightleftharpoons C+D$

$\Delta G={ \Delta G }^{ 0 }+RTlnQ$
for equilibrium, $\Delta G=0$
$\therefore \quad 0={ \Delta G }^{ 0 }+RTlnK$
$\therefore \quad { \Delta G }^{ 0 }=-RTlnK$
$\therefore \quad { \Delta G }^{ 0 }=-2.303RTlogK$
i.e. $K={ 10 }^{ { -\Delta G }^{ 0 }/2.303RT }$

When $\ln{K}$ is plotted against $\cfrac { 1 }{ T } $ using the Van't Hoff equation, a straight line is expected with a slope equal to:

  1. $\Delta { H }^{ o }/RT$

  2. $-\Delta { H }^{ o }/R$

  3. $\Delta { H }^{ o }/R$

  4. $R/\Delta { H }^{ o }$


Correct Option: B

If we know $\displaystyle { \Delta G }^{ \circ  }$ of a reaction, which of the following can be defined ?
I. Cell potential, $\displaystyle { E }^{ \circ  }$
II. Activation energy, $\displaystyle { E } _{ a }$
III. Equilibrium constant, $\displaystyle { K } _{ eq }$

  1. I and II only

  2. I and III only

  3. III only

  4. I, II, III

  5. None of these


Correct Option: B
Explanation:

If we know $\displaystyle \Delta G^o $  of a reaction, the following can be defined. 
I. Cell potential, $\displaystyle E^o $
III. Equilibrium constant, Keq
$\displaystyle \Delta G^o = -nF E^o = - RTlnK $

For the first order reaction $A\longrightarrow B+C$, carried out at $27^0C  $ if  $ 3.8\ \times \ 10^{ -16 } \%$ of the reactant molecules exists in the activated state, the ${ E } _{ a }$ (activation energy) of the reaction is:

  1. 12 kJ/mole

  2. 831.4 kJ/mole

  3. 100 kJ/mole

  4. 88.57 kJ/mole


Correct Option: A

By which of the following relations, the equilibrium constant varies with temperature?

  1. $\ln { { K } _{ 2 } } -\ln { { K } _{ 1 } } =\cfrac { \Delta { H }^{ o } }{ R } \int _{ { T } _{ 1 } }^{ { T } _{ 2 } }{ d\left( \cfrac { 1 }{ T } \right) } $

  2. $\ln { { K } _{ 2 } } -\ln { { K } _{ 1 } } =-\cfrac { \Delta { H }^{ o } }{ R } \int _{ { 1/T } _{ 1 } }^{ { 1/T } _{ 2 } }{ d\left( \cfrac { 1 }{ { T }^{ 2 } } \right) } $

  3. $\ln { { K } _{ 2 } } -\ln { { K } _{ 1 } } =-\cfrac { \Delta { H }^{ o } }{ R } \int _{ { T } _{ 1 } }^{ { T } _{ 2 } }{ d\left( \cfrac { 1 }{ T } \right) } $

  4. $\ln { { K } _{ 2 } } -\ln { { K } _{ 1 } } =-\cfrac { \Delta { H }^{ o } }{ R } \int _{ { 1/T } _{ 2 } }^{ { 1/T } _{ 1 } }{ d\left( \cfrac { 1 }{ { T }^{ } } \right) } $


Correct Option: C
Explanation:
$\textbf{Explanation:}$

  • We can use $\mathit{Gibbs-Helmholtz}$ to get the temperature dependence of $K$                                                                                            
$\mathbf{\left ( \frac{\partial \left [ \Delta _{r}G^{o} \right ]}{\partial T} \right )}$   $\mathbf{=\frac{-\Delta _{r}H^{o}}{T^{2}}}$     $\mathbf{\rightarrow \left ( 1 \right )}$

  • At equilibrium, we can equate $\Delta _{r}G^{o}$ to $-RTlnK$ so we get

  $\mathbf{\left ( \frac{\partial \left [ lnK \right ]}{\partial T} \right )= \frac{\Delta _{r}H^{o}}{RT^{2}}}$    $\mathbf{\rightarrow (2)}$

  • We see that whether  K  increases or decreases with temperature is linked to whether the reaction enthalpy is positive or negative. If the temperature is changed little enough that  $\Delta _rH^{o}$  can be considered constant, we can translate a  $K$  value at one temperature into another by integrating the above expression, we get a similar derivation as with melting point depression:

$\mathbf{ln\frac{K\left ( T _{2} \right )}{K\left ( T _{1} \right )}=\frac{-\Delta _{r}H^{o}}{R}\left ( \frac{1}{T _{2}}-\frac{1}{T _{1}} \right )}$$\mathbf{\rightarrow \left ( 3 \right )}$

  • If we integrate and differentiate the left side of the equation then we get and solve the right side we get

$\mathbf{lnK _{2}-lnK _{1}=\frac{-\Delta H^{0}}{R}\int _{T _{1}}^{T _{2}}\mathbf{\mathit{d}}\left ( \frac{1}{T} \right )}$$\mathbf{\rightarrow (4)}$

Hence from equation $4$ we can say that option $C$ is correct.