Tag: business maths

Questions Related to business maths

The proposition $\left( {p \wedge q} \right) \Rightarrow p$ is 

  1. neither tautology nor contradiction

  2. A tautology

  3. A contradiction

  4. Cannot be determined


Correct Option: B

The statement $p \to (q \to p)$ is equivalent to 

  1. $p \to q$

  2. $p \to (q \vee p)$

  3. $p \to (q \to p)$

  4. $p \to (q \wedge p)$


Correct Option: B

Which of the following is correct?

  1. $(~p \vee ~q) \equiv (p \wedge q)$

  2. $(p \rightarrow q) \equiv (~q \rightarrow ~p)$

  3. $~(p \rightarrow ~q) \equiv (p \wedge ~q)$

  4. $~(p \leftrightarrow q) \equiv (p \rightarrow q) \wedge (q \rightarrow p)$


Correct Option: D
Explanation:


$~(p \leftrightarrow q) \equiv (p \rightarrow q) \wedge (q \rightarrow p)$ is true, we show it by truth table using boolean expression.

1.$p\rightarrow q$=min(1,1+q-p)
2.$p\wedge q$=min(p,q)
3.$p\leftrightarrow q$=1-|p-q|

Now we draw or make truth table using these operations
L.H.S  

 p  q $p\leftrightarrow q$ 
 1


R.H.S 

p $p\rightarrow q$  $q\rightarrow p$   $(p \rightarrow q) \wedge (q \rightarrow p)$
1  1  1  1
1  0

L.H.S =R.H.S

$~(p \leftrightarrow q) \equiv (p \rightarrow q) \wedge (q \rightarrow p)$

$(p \wedge q) \vee  \sim p$ is equivalent to 

  1. $\sim p \wedge q$

  2. $\sim p \vee q$

  3. $p \wedge q$

  4. $p \vee q$


Correct Option: A

In a certain code language, $'543'$ means 'give my water'; $'247'$ means 'water is life' and $'632'$ means 'enjoy my life'. Which of the following stands for 'enjoy' in that language?

  1. $7$

  2. $6$

  3. $2$

  4. $5$


Correct Option: A

$\sim (p \wedge q)\Rightarrow (\sim p)\vee (\sim p \vee q)$ is equal to

  1. $\sim p \vee q$

  2. $\sim p \wedge q$

  3. $p\vee \sim q$

  4. $p\wedge \sim q$


Correct Option: A

The equivalent of $(p \rightarrow \sim p) \vee (\sim p \rightarrow p)$ is 

  1. $p \vee \sim p$

  2. $T \rightarrow F$

  3. $T \leftrightarrow F$

  4. $p \wedge \sim p$


Correct Option: A

Identify which of the following statement is not equivalent to the others

  1. If $x$ is bass then $x$ is bad.

  2. Boss implies bad,

  3. Bad is necessary condition for bass.

  4. $x$ is boss iff $x$ is bad.


Correct Option: A

Either $p$ or $q$ is equivalent to:

  1. $p \vee q$

  2. $(p \vee \sim q) \vee (q \wedge \sim p)$

  3. $(p \vee \sim q) \wedge (q \vee \sim p)$

  4. none


Correct Option: A

Equivalent statement of ''If $x\in Q$, then $x\in T$'' is
$x\in Q$ is necessary for $x\in l$
$x\in l$ is sufficient for $x\in Q$
$z\in Q$ or $x\in l$
$x\in Q$ but $x\in l$ 

  1. $I$ & $II$

  2. $I,\ II$ & $IV$

  3. $III$

  4. $All$


Correct Option: B