Tag: business maths
Questions Related to business maths
The inverse of a skew-symmetric matrix of an odd order is
If $A=\begin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix}$, $B=\begin{bmatrix} 0 & -i \ i & 0 \end{bmatrix}$ then ${(A+B)}^{2}$ equals
If $D=diag({d} _{1}, {d} _{2}, {d} _{3}........{d} _{n})$, where ${d} _{1}\ne 0$ for all $i=1, 2,.....n$, then ${D}^{-1}$ is equal to
lf $\mathrm{A}$ is $\left{\begin{array}{lll}
8 & -6 & 2\
-6 & 7 & -4\
2 & -4 & \lambda
\end{array}\right}$ is a singular matrix then $\lambda =$
If $\left[\begin{array}{ll}
\mathrm{x} & \mathrm{y}^{3}\
2 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 8\
2 & 0
\end{array}\right]$, then $\left[\begin{array}{ll}
\mathrm{x} & \mathrm{y}\
2 & 0
\end{array}\right]^{-1}$ is equal to
$p=$ $\begin{bmatrix}
0 & x &0 \
0& 0 & 1
\end{bmatrix}$, then $p^{-1}$=
A= $\begin{bmatrix}
cos\alpha & -sin\alpha \
sin\alpha & cos\alpha
\end{bmatrix}$ ,then find which of the following are correct
I) A is singular matrix
II) $A^{-1}$=$A^{T}$
III) A is symmetric matrix
IV) $A^{-1}= -A$
If AB=KI where $\displaystyle K\in R$ then $\displaystyle A^{-1}$= _____
If A=$\displaystyle \begin{vmatrix} 5 & -3 \ 4 & 2 \end{vmatrix}$ then find $\displaystyle AA^{-1}$
If $\displaystyle A=\left[ \begin{matrix} \cos { \theta } & \sin { \theta } \ -\sin { \theta } & \cos { \theta } \end{matrix} \right] $, then $\displaystyle \underset { n\rightarrow \infty }{ \lim } \frac { 1 }{ n } { A }^{ n }$ is?