Tag: business maths
Questions Related to business maths
If f (x)= $\left[ {\begin{array}{{20}{c}} {\cos \,x}&{ - \sin \,x}&0 \ {\sin \,x}&{\cos \,x\,}&0 \ 0&0&1 \end{array}} \right]$ and $\left[ {\begin{array}{{20}{c}} {\cos \,x}&0&{\sin \,x} \ 0&1&0 \ { - \sin \,x}&0&{\cos \,x} \end{array}} \right]$
then ${\left[ {f\left( x \right)g\left( y \right)} \right]^{ - 1}}$ is equal to
If for the matrix $A.A^3=1$, then $A^{-1}=$
Let $A$ be a square matrix such that $A^2 = A$ and $|A| \neq 0$, then choose the correct option.
For two matrices $A$ and $B$, if $AB=0$, then
If $A=\begin{bmatrix} \cos { \alpha } & -\sin { \alpha } \ \sin { \alpha } & \cos { \alpha } \end{bmatrix}$, $B=\begin{bmatrix} \cos { 2\beta } & \sin { 2\beta } \ \sin { 2\beta } & -\cos { 2\beta } \end{bmatrix}$, where 0 < $\beta$ < ${ \pi }/{ 2 }$, then prove that $BAB=$ ${ A }^{ -1 }$.
Let $A$ be a $3\times 2$ matrix with real entries. Let $H = A(A^{T}A)^{-1}A^{T}$ where $A^{T}$ is the transpose of $A$ and let $I$ be the identity matrix of order $3\times 3$. Then
If $A^3 = 0$ then $1 + A + A^2$ is equal to
If $ \begin{bmatrix}
2 & 1 \[0.3em]
3 & 2
\end{bmatrix} \ A \begin{bmatrix}
-3 & 2 \[0.3em]
5 & -3
\end{bmatrix} = \begin{bmatrix}
1 & 0 \[0.3em]
0 & 1
\end{bmatrix}$ then the matrix A is equal to
Find the number of all possible ordered sets of two $(n\times n)$ matrices A and B for which $AB-BA=$$I$.
If $A=|a _{ij}| _{2\times 2}$, where $a _{ij}=\left{\begin{matrix} i+j, & if & i\neq j\ i^2-2j, & if & i=j\end{matrix}\right.$, then $A^{-1}=?$