Tag: business maths
Questions Related to business maths
If $A$ and $B$ are square matrices such that $B=-A^{-1}BA$, then
If $A$ is a $2\times 2$ matrix such that $A^{2}-4A+3I=0$, then the inverse of $A+3I$ is equal to
If $A=\left[ \begin{matrix} 1 & -1 & 1 \ 2 & 1 & -3 \ 1 & 1 & 1 \end{matrix} \right] $ and $10B=\left[ \begin{matrix} 4 & 2 & 2 \ -5 & 0 & \alpha \ 1 & -2 & 3 \end{matrix} \right] $ where $B=A^{-1}$ then $\alpha$ is equal to-
The inverse of the matrix $\left[ \begin{array} { c c c } { 1 } & { 0 } & { 0 } \ { 3 } & { 3 } & { 0 } \ { 5 } & { 2 } & { - 1 } \end{array} \right]$ is
If $A=\left[ \begin{matrix} 1 & 0 & -1 \ 3 & 4 & 5 \ 0 & 6 & 7 \end{matrix} \right]$ and $A^{-1}=[\alpha _{ij}] _{3\times 3}$ then $\alpha _{23}=$
Inverse of $\begin{bmatrix} -1 & 5 \ -3 & 2 \end{bmatrix}$ is
If A is a 2 X 2 matrix such that $A^2009 + A^2008$= I, then : $(A^2008)^-1$=
If $I=I=\left[ \begin{matrix} 1 \ 0 \end{matrix}\begin{matrix} 0 \ 1 \end{matrix} \right] ,j=\left[ \begin{matrix} 0 \ -1 \end{matrix}\begin{matrix} 1 \ 0 \end{matrix} \right] and B=\left[ \begin{matrix} cos\theta \ -sin\theta \end{matrix}\begin{matrix} sin\theta \ cos\theta \end{matrix} \right] ,$ then B =
Let p be a non-singular matrix, $1+p+p^{2}+....+p^{n}=0$ (0 denotes the null matrix) then $p^{-1}=$
Let A be a $3 \times 3$ matrix such that is: $A\left[ \begin{matrix} 1 & 2 & 3 \ 0 & 2 & 3 \ 0 & 1 & 1 \end{matrix} \right]=\left[ \begin{matrix} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{matrix} \right] $Then $A^{-1}$ is