Tag: business maths
Questions Related to business maths
$A=\begin{bmatrix} 1&-2&3\7&-8&9\4&-5&6\end{bmatrix}$ the new matrix formed by adding $\ 2^{nd}\ row \ to \ 1^{st} $ row will be
A=$\begin{bmatrix} 1&2&3\4&5&6\7&8&9\end{bmatrix}$
The new matrix formed after interchanging $2^{nd}$ and $3^{rd}$rows will be
For a matrix $A \begin{pmatrix} 1& 0 & 0\ 2 & 1 & 0\ 3 & 2 & 1\end{pmatrix}$, if $U _{1}, U _{2}$ and $U _{3}$ are $3\times 1$ column matrices satisfying $AU _{1} = \begin{pmatrix}1\ 0 \ 0
\end{pmatrix}, AU _{2} \begin{pmatrix}2\3 \ 0
\end{pmatrix}, AU _{3} = \begin{pmatrix}2\ 3\ 1
\end{pmatrix}$ and $U$ is $3\times 3$ matrix whose columns are $U _{1}, U _{2}$ and $U _{3}$
Then sum of the elements of $U^{-1}$ is
The inverse of a diagonal matrix is a :
Inverse of $A = \begin{bmatrix} 1& 3\ 2 & -2\end{bmatrix} $ is equal to?A
If $A$ is a non zero square matrix of order $n$ with $det\left( I+A \right) \neq 0$, and ${A}^{3}=0$, where $I,O$ are unit and null matrices of order $n\times n$ respectively, then ${ \left( I+A \right) }^{ -1 }=$
If the matrix $\begin{bmatrix} 0 & 2\beta & \Upsilon \ \alpha & \beta & -\Upsilon \ \alpha & -\beta & \Upsilon \end{bmatrix}$is orthogonal, then
What is the inverse of the matrix
$A=\begin{bmatrix} \cos { \theta } & \sin { \theta } & 0 \ -\sin { \theta } & \cos { \theta } & 0 \ 0 & 0 & 1 \end{bmatrix}$ ?
If $A=\begin{bmatrix} 1 & 1 & 1 \ 1 & 1 & 1 \ 1 & 1 & 1 \end{bmatrix}$ then $A^n=\begin{bmatrix} 3^{n-1} & 3^{n-1} & 3^{n-1} \ 3^{n-1} & 3^{n-1} & 3^{n-1} \ 3^{n-1} & 3^{n-1} & 3^{n-1} \end{bmatrix}$ , $n \in N$
If $A = \begin{bmatrix}1\ 2\ 3
\end{bmatrix}$ then $AA^{1}$.