Tag: matrices and determinants
Questions Related to matrices and determinants
$\begin{vmatrix}a^2 + x^2 & ab - cx & ac + bx\ ab+ cx & b^2 + x^2 & bc - ax\ ac - bx & bc + ax & c^2 + x^2\end{vmatrix} =$
If $\Delta = \begin{vmatrix}a _1 & b _1 & c _1\a _2 & b _2 & c _2\a _3 & b _3 & c _3\end{vmatrix}$ and $A _1, B _1, C _1$ denote the co-factors of $a _1, b _1, c _1$ respectively, then the value of the determinant $\begin{vmatrix}A _1 & B _1 & C _1\A _2 & B _2 & C _2\ A _3 & B _3 & C _3\end{vmatrix}$ is
If $A=\begin{bmatrix} a & c & b\ b & a & c\ c & b & a\end{bmatrix}$ then the cofactor of $a _{32}$ in $A+A^T$ is?
$\displaystyle A _{1},B _{1},C _{1}$ are respectively the co-factors of $\displaystyle a _{1},b _{1},c _{1}$ of the determinant $\displaystyle \Delta = \begin{vmatrix}a _{1} &b _{1} &c _{1} \a _{2} &b _{2} &c _{2} \a _{3} &b _{3} &c _{3}\end{vmatrix}$ then $\displaystyle \begin{vmatrix}B _{2} &C _{2} \B _{3} &C _{3}\end{vmatrix}$ equals
If $\Delta =\begin{vmatrix} a _1 & b _1 & c _1 \ a _2 & b _2 & c _2 \ a _3 & b _3 & c _3\end{vmatrix}$ and $A _2, B _2, C _2$ are respectively cofactors of $a _2, b _2, c _2$ then $a _1A _2 + b _1B _2 + c _1C _2$ is equal to
If $A = (a _{ij})$ is a $4\times 4$ matrix and $C _{ij}$ is the co-factor of the element $a _{ij}$ in Det (A), then the expression $a _{11}C _{11} + a _{12}C _{12} + a _{13}C _{13} + a _{14}C _{14}$ equals
Let $A = [a _{ij}] _{n\times n}$ be a square matirx and let $c _{ij}$ be cofactor of $a _{ij}$ in A. If $C = [c _{ij}]$, then
$\begin{vmatrix}1+i & 1-i & i \ 1-i & i & 1+i\ i & 1+i & 1-i\end{vmatrix}$ (where $i=\sqrt {-1}$ ) equals
If $A=\begin{bmatrix} 1 & -2 & 3 \ 4 & 0 & -1 \ -3 & 1 & 5 \end{bmatrix}$, then ${(adj. A)} _{23}$ is equal to