Tag: matrices and determinants
Questions Related to matrices and determinants
For what value of
k, the matrix $A = \begin{bmatrix} 4 & 3 -k\\ 1 & 2 \end{bmatrix}$ is
not invertible?
If the traces of $A, B$ are $20$ and $-8$, then the trace of $A+B$ is:
If $A$ is a $3\times3$ skew-symmetric matrix, then the trace of $A$ is equal to
If$A=\left[ \begin{matrix} 1 & -5 & 7 \ 0 & 7 & 9 \ 11 & 8 & 9 \end{matrix} \right] $ , then trace of matrix $A$ is
If $\displaystyle :A= \left [ a _{ij} \right ]$ is a scalar matrix of order $\displaystyle :n\times n$ such that $\displaystyle :a _{ij}= k $ for all then trace of A is equal to
If $\displaystyle :A= \left [ a _{ij} \right ]$ is a scalar matrix, then trace of A is
If A is a skew-symmetric matrix, then trace of A is
If $A=\begin{bmatrix} 1 & -5 & 7 \ 0 & 7 & 9 \ 11 & 8 & 9 \end{bmatrix}$, then the value of tr $A$ is
If $A = \left[ {{a _{ij}}} \right]$ and ${a _{ij}} = i\left( {i + j} \right)$ then trace of $A=$
If $tr(A)=3, tr(B)=5$, then $tr(AB)$=