Tag: fundamental theorem of calculus

Questions Related to fundamental theorem of calculus

The value of the integral $\displaystyle\int{\sin{x}{\cos}^{4}{x}dx}$ where $x\in\left[-1,\,1\right]$ is 

  1. 1

  2. 1\2

  3. 0

  4. 4


Correct Option: C
Explanation:
$f\left(x\right)=\sin{x}{\cos}^{4}{x},$

$f\left(-x\right)=\sin{\left(-x\right)}{\cos}^{4}{\left(-x\right)}=-f\left(x\right)$

Since $f\left(x\right)$ is an odd function, $\displaystyle\int _{-1}^{1}\sin{x}{\cos}^{4}{x}dx=0$

If $\Delta (x)=\left| \begin{matrix} 1+x+2{ x }^{ 2 } & x+3 & 1 \ x+2{ x }^{ 2 } & x & 3 \ 3x+6{ x }^{ 2 } & 3x+11 & 9 \end{matrix} \right| $ then $\displaystyle \int^{1} _{0}\Delta (x)dx$ is

  1. $\dfrac {176}{5}$

  2. $-\dfrac {176}{3}$

  3. $\dfrac {186}{3}$

  4. $-\dfrac {192}{3}$


Correct Option: A
If $\phi{\left(x\right)}={\phi}^{\prime}{\left(x\right)}$ and $\phi{\left(1\right)}=2$ then $\phi{\left(3\right)}$  is equal to
  1. ${ \phi  }^{ 2 }$

  2. $2{ \phi  }^{ 2 }$

  3. $3{ \phi  }^{ 2 }$

  4. $2{ \phi  }^{ 3 }$


Correct Option: A
Explanation:
$ \phi(x) = \phi '(x) \Rightarrow  \phi(x) = \frac{2\phi(x)}{dx} $

$ \Rightarrow  $  $\int  dx = \int \frac{d(\phi (x))}{\phi(x)}$

$ \Rightarrow x+c = ln \phi (x) \Rightarrow \phi (x) = k.e^{x}$

$ \phi(1) = 2 \Rightarrow  2 = k.e^{1}  $ $ \Rightarrow k=2e^{-1}$

$  \therefore \phi (x) = 2.e^{x-1}$

$ \phi(3) = 2.e^{2} = \phi^{2}$

$ \phi(3) = \phi^{2}$


$\displaystyle \int _{1}^{4}\frac{\mathrm{x}\mathrm{d}\mathrm{x}}{\sqrt{2+4\mathrm{x}}}=$

  1. $\displaystyle \frac{1}{2}$

  2. $\displaystyle \frac{1}{\sqrt{2}}$

  3. $\displaystyle \frac{3}{2}$

  4. $\displaystyle \frac{3}{\sqrt{2}}$


Correct Option: D
Explanation:

$\int _{1}^{4}\dfrac{x   dx}{\sqrt{2 + 4x}}=\dfrac{1}{2}\int _{1}^{4}\dfrac{x   dx}{\sqrt{x+\dfrac{1}{2}}}$
$=\dfrac{1}{2}\left [ \int _{1}^{4}\dfrac{(x+\dfrac{1}{2})dx}{\sqrt{x+\dfrac{1}{2}}}-\int _{1}^{4}\dfrac{\dfrac{1}{2}dx}{\sqrt{x+\dfrac{1}{2}}} \right ]$
$=\dfrac{1}{2}\left [ \int _{1}^{4} \sqrt{x+\dfrac{1}{2}} dx-\int _{1}^{4}(x+\dfrac{1}{2})^{\dfrac{1}{2}} \int _{1}^{4} \right ]$
$=\dfrac{1}{2} \left [ \dfrac{2}{3} (x+\dfrac{1}{2})^{\dfrac{3}{2}} \int _{1}^{4}-(x+\dfrac{1}{2})^{\dfrac{4}{2}} \int _{1}^{4} \right ]$
$=\dfrac{1}{3} \left [ \left ( \dfrac{9}{2} \right )^{\dfrac{3}{2}}-\left ( \dfrac{3}{2} \right )^{\dfrac{3}{2}} \right ] -\dfrac{1}{2} \left [ \left ( \dfrac{9}{2} \right )^{\dfrac{1}{2}}-\left ( \dfrac{3}{2} \right )^{\dfrac{1}{2}} \right ]$
$=\dfrac{1}{3} \left [ \left ( \dfrac{9}{2} \right )\left ( \dfrac{9}{2} \right )^{\dfrac{1}{2}}-\left ( \dfrac{3}{2} \right )\left ( \dfrac{3}{2} \right )^{\dfrac{1}{2}} \right ] - \dfrac{1}{2} \left [ \left ( \dfrac{3}{\sqrt{2}} \right )-\dfrac{\sqrt{3}}{\sqrt{2}} \right ]$
$=\dfrac{3}{\sqrt{2}}$

The value of $\displaystyle \int _{0}^{2}(x-\log _{2}a)dx=2\log _{2}(\frac{2}{a})$ for which of the following conditions?

  1. $\mathrm{a}>0$

  2. $\mathrm{a}>2$

  3. $\mathrm{a}=4$

  4. $\mathrm{a}=8$


Correct Option: A
Explanation:

$\int _{ 0 }^{ 2 }{ (x-\log _{ 2 }a } )dx=2\log _{ 2 }(\cfrac { 2 }{ a } )$

The solution exists only if function is defined.
$ x-\log _{ 2 }a\longrightarrow$ defined
$ x\longrightarrow$ is defined for all values 
But $\log _{ 2 }a\longrightarrow$ defined for all values
But $ \log _{ 2 }a\longrightarrow$ defined for only a>0$
$\therefore \log (0)$ and $\log \text {(negative values)} )\longrightarrow$ not defined
Hence, required condition is $a>0$.

Consider the integral $I=\displaystyle\int^{\pi} _0 ln(\sin x)dx$.What is $\displaystyle\int^{\dfrac{\pi}{2}} _{0}$ ln $(\sin x)dx$ equal to?

  1. $4I$

  2. $2I$

  3. $I$

  4. $\dfrac{I}{2}$


Correct Option: D
Explanation:

$I = \displaystyle \int _{0}^{\pi} {ln(\sin x)dx}$

 using property,
$I = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {(ln(\sin (2\pi -x) +ln(\sin x)) dx}$

we know that $\sin(x) = \sin(2\pi -x)$ 

$I = 2\displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin x)dx}$

$\dfrac{I}{2} = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin x)dx}$

Consider the integral $I=\displaystyle\int^{\pi} _0 ln(\sin x)dx$.What is $\displaystyle\int^{\frac{\pi} {2}} _0 ln(\cos x)dx$ equal to?

  1. $\dfrac{I}{2}$

  2. $I$

  3. $2I$

  4. $4I$


Correct Option: A
Explanation:

$I = \displaystyle \int _{0}^{\pi} {ln(\sin x)dx}$

 using property,
$I = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {(ln(\sin (2\pi -x) +ln(\sin x)) dx}$

we know that $\sin(x) = \sin(2\pi -x)$ 
$I = 2\displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin x)dx}$

$\dfrac{I}{2} = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin x)dx}$
 by property,

$\dfrac{I}{2} = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin (\dfrac{\pi}{2} - x))dx}$

$\dfrac{I}{2} = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\cos x)dx}$

$ \int _{\sin x}^1 t^2 f(t) dt = 1 - \sin x \forall x \epsilon (0, \pi / 2 ) $ then $ f \left( \dfrac {1}{\sqrt3} \right) $ is :

  1. $3$

  2. $\sqrt3$

  3. $1/3$

  4. None of these


Correct Option: A
Explanation:

$ \int _{\sin x}^1 t^2 f(t) dt = 1 - \sin x \forall x \epsilon (0, \pi/2 ) $
Differentiating both sides we get 
$ \dfrac {d}{dx} (1) [ 1 \cdot f (1)] - \cos x ( \sin^2 x) f ( \sin x) = -\cos x  $
$ \Rightarrow f ( \sin x) = \dfrac {1}{ \sin^2 x} $
$ \therefore f \left( \dfrac {1}{\sqrt3} \right) = f \left( \sin \left( \sin^{-1} \dfrac {1}{\sqrt3} \right) \right) $
$ = \left[ \dfrac {1}{ \sin \left( \sin^{-1} \dfrac {1}{\sqrt3} \right)} \right]^2 = 3 $

Consider the integrals ${I _1} = \int _0^1 {{e^{ - x}}{{\cos }^2}xdx,} {I _2} = \int _0^1 {{e^{ - {x^2}}}{{\cos }^2}xdx,} {I _3} = \int _0^1 {{e^{ - x}}dx} $ and ${I _4} = \int _0^1 {{e^{ - (1/2){x^2}}}} dx$. The greatest of these integrals is

  1. $I _1$

  2. $I _2$

  3. $I _3$

  4. $I _4$


Correct Option: D
Explanation:

$I _1=\int _{0}^{4}e^{-x} cos^2x dx$
$I _2=\int _{0}^{1}e^{-x^2}cos^2x dx$
Both have $cos^2x$ so value get restricted more in (0, 1)
Now in (0, 1) $e^{-\frac {x^2}{2}}>e^{-x}$
$\therefore \int _{0}^{1}e^{-\frac {x^2}{2}}>\int _{0}^{1}e^{-x}$
$\therefore I _4>I _3>I _1>I _2$

Let $ f\left( a,b \right) =\int _{ a }^{ b }{ \left( { x }^{ 2 }-4x+3 \right) dx,\left( b>a \right)  }$ then

  1. $ f\left( a,3 \right)$ is least when $a=1$

  2. $f\left( 4,b \right)$ is an increasing function $ \forall b\ge 4$

  3. $ f\left( 0,b \right)$ is least for $b=2$

  4. $ \min { \left{ f\left( a,b \right) \right} =-\dfrac { 4 }{ 3 } } \forall a,b\in R$


Correct Option: A
Explanation:

First of all integrate the function.

$\displaystyle \int _{  }^{  }{ \left( { x }^{ 2 }-4x+3 \right) dx= } \left[ \frac { { x }^{ 3 } }{ 3 } -4\frac { { x }^{ 2 } }{ 2 } +3x \right] $

Apply the limits,
$\displaystyle f(a,b)={ \left[ \frac { { x }^{ 3 } }{ 3 } -4\frac { { x }^{ 2 } }{ 2 } +3x \right]  } _{ a }^{ b }$

Here $b=3$

Therefore,
$\displaystyle f(a,3)={ \left[ \frac { { x }^{ 3 } }{ 3 } -4\frac { { x }^{ 2 } }{ 2 } +3x \right]  } _{ a }^{ b }=\left[ \frac { 27 }{ 3 } -2\times 9+9 \right] -\left[ \frac { { a }^{ 3 } }{ 3 } -2{ a }^{ 2 }+3a \right] \ \displaystyle =2{ a }^{ 2 }-\frac { { a }^{ 3 } }{ 3 } -3a$

Hence,
Differentiate the above function to find the maximum or minimum.
$\displaystyle { f }^{ \prime  }\left( a,3 \right) =4a-{ a }^{ 2 }-3=0$

therefore $\displaystyle a=1,3$

Check whether the function is minimum or maximum.
$\displaystyle { f }^{ \prime \prime  }\left( a,3 \right) =4-{ 2a }=2$ which  is greater than $0$.
Hence the function $f(a,3)$ is minimum at $a=1$.