Tag: fundamental theorem of calculus
Questions Related to fundamental theorem of calculus
The value of the integral $\displaystyle\int{\sin{x}{\cos}^{4}{x}dx}$ where $x\in\left[-1,\,1\right]$ is
If $\Delta (x)=\left| \begin{matrix} 1+x+2{ x }^{ 2 } & x+3 & 1 \ x+2{ x }^{ 2 } & x & 3 \ 3x+6{ x }^{ 2 } & 3x+11 & 9 \end{matrix} \right| $ then $\displaystyle \int^{1} _{0}\Delta (x)dx$ is
$\displaystyle \int _{1}^{4}\frac{\mathrm{x}\mathrm{d}\mathrm{x}}{\sqrt{2+4\mathrm{x}}}=$
The value of $\displaystyle \int _{0}^{2}(x-\log _{2}a)dx=2\log _{2}(\frac{2}{a})$ for which of the following conditions?
Consider the integral $I=\displaystyle\int^{\pi} _0 ln(\sin x)dx$.What is $\displaystyle\int^{\dfrac{\pi}{2}} _{0}$ ln $(\sin x)dx$ equal to?
Consider the integral $I=\displaystyle\int^{\pi} _0 ln(\sin x)dx$.What is $\displaystyle\int^{\frac{\pi} {2}} _0 ln(\cos x)dx$ equal to?
$ \int _{\sin x}^1 t^2 f(t) dt = 1 - \sin x \forall x \epsilon (0, \pi / 2 ) $ then $ f \left( \dfrac {1}{\sqrt3} \right) $ is :
Consider the integrals ${I _1} = \int _0^1 {{e^{ - x}}{{\cos }^2}xdx,} {I _2} = \int _0^1 {{e^{ - {x^2}}}{{\cos }^2}xdx,} {I _3} = \int _0^1 {{e^{ - x}}dx} $ and ${I _4} = \int _0^1 {{e^{ - (1/2){x^2}}}} dx$. The greatest of these integrals is
Let $ f\left( a,b \right) =\int _{ a }^{ b }{ \left( { x }^{ 2 }-4x+3 \right) dx,\left( b>a \right) }$ then
- ← Previous
- 1
- 2
- 3
- Next →