Tag: fundamental theorem of calculus
Questions Related to fundamental theorem of calculus
$\displaystyle \int _0^1 \dfrac{xe^x}{(x + 1)^2} dx =$
-
$\dfrac{e}{2}$
-
$\dfrac{e - 1}{2}$
-
$\dfrac{3e}{2} -1$
-
$\dfrac{e - 3}{2}$
$\displaystyle\int _{ 0 }^{ 1 }{ \cfrac { \tan ^{ -1 }{ x } }{ x } } dx$ equals
-
$\displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { x }{ \sin { x } } dx } $
-
$\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { x }{ \sin { x } } dx } $
-
$\displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { \sin { x } }{ x } dx } $
-
None of the above
Let $I=\int _{ 0 }^{ 1 }{ \cfrac { \tan ^{ -1 }{ x } }{ x } } dx$
Put $\tan ^{ -1 }{ x } =\cfrac { z }{ 2 } \Rightarrow x=\tan { \cfrac { z }{ 2 } } $
$\Rightarrow dx=\cfrac { 1 }{ 2 } \sec ^{ 2 } \cfrac { z }{ 2 } dz$
$\therefore \quad I=\displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { \cfrac { z }{ 2 } \left( \cfrac { 1 }{ 2 } \sec ^{ 2 } \cfrac { z }{ 2 } \right) }{ \tan { \cfrac { z }{ 2 } } } } dz$
$I=\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { z }{ \cfrac { \sin { \cfrac { z }{ 2 } } }{ \cos { \cfrac { z }{ 2 } } } } .\cfrac { 1 }{ 2\cos ^{ 2 }{ \cfrac { z }{ 2 } } } dz } $
$=\cfrac { 1 }{ 2 } \int _{ 0 }^{ \pi /2 }{ \cfrac { z }{ 2\sin { \cfrac { z }{ 2 } } \cos { \cfrac { z }{ 2 } } } } dz$
$=\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { z }{ \sin { z } } } dz=\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { x }{ \sin { x } } } dx$
Evaluate $\displaystyle\int^{\frac{3}{2}} _{-1}|x\sin(\pi x)|dx$.
-
$\dfrac {3}{\pi} +\dfrac {1}{\pi^2}$
-
$3\pi +\pi^2$
-
$\dfrac { 2 }{ \pi } +\dfrac { 1 }{ { \pi }^{ 2 } }$
-
none of the above
$|x\sin(\pi x)|=\begin{cases}x\sin \pi x ,\,\,\,\,x\in(-1,1)\ -x\sin\pi x,x\in (1,\dfrac{3}{2}) \end{cases}$
$\int _{ 0 }^{ \infty }{ f\left( x+\cfrac { 1 }{ x } \right) .\cfrac { \ln { x } }{ x } } dx$
-
Is equal to zero
-
Is equal to one
-
Is equal to $\cfrac { 1 }{ 2 } $
-
Can not be evaluated
Evaluate $I = \displaystyle \int _{\pi /6}^{\pi /3}\sin x:dx$
-
$\displaystyle \frac{1-\sqrt{3}}{2}$
-
$\displaystyle \frac{\sqrt{3}+1}{2}$
-
$\displaystyle \frac{\sqrt{3}-1}{2\sqrt{3}}$
-
None of these
What is $\displaystyle \int _{ 0 }^{ \pi }{ { e }^{ x } } \sin { x } dx$ equal to?
-
$\cfrac { { e }^{ \pi }+1 }{ 2 } $
-
$\cfrac { { e }^{ \pi }-1 }{ 2 } $
-
${ e }^{ \pi }+1$
-
$\cfrac { { e }^{ \pi }+1 }{ 4 } $
Using Integration by part$:-$
- ← Previous
- 1
- 2
- 3
- Next →