Tag: fundamental theorem of calculus

Questions Related to fundamental theorem of calculus

$\displaystyle \int _0^1 \dfrac{xe^x}{(x + 1)^2} dx =$

  1. $\dfrac{e}{2}$

  2. $\dfrac{e - 1}{2}$

  3. $\dfrac{3e}{2} -1$

  4. $\dfrac{e - 3}{2}$


Correct Option: C

$\displaystyle\int _{ 0 }^{ 1 }{ \cfrac { \tan ^{ -1 }{ x }  }{ x }  } dx$ equals

  1. $\displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { x }{ \sin { x } } dx } $

  2. $\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { x }{ \sin { x } } dx } $

  3. $\displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { \sin { x } }{ x } dx } $

  4. None of the above


Correct Option: B
Explanation:

Let $I=\int _{ 0 }^{ 1 }{ \cfrac { \tan ^{ -1 }{ x }  }{ x }  } dx$


Put $\tan ^{ -1 }{ x } =\cfrac { z  }{ 2 } \Rightarrow x=\tan { \cfrac { z  }{ 2 }  } $

$\Rightarrow dx=\cfrac { 1 }{ 2 } \sec ^{ 2 } \cfrac { z  }{ 2 } dz$

$\therefore \quad I=\displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { \cfrac { z }{ 2 } \left( \cfrac { 1 }{ 2 } \sec ^{ 2 } \cfrac { z  }{ 2 }  \right)  }{ \tan { \cfrac { z }{ 2 }  }  }  } dz$

$I=\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { z }{ \cfrac { \sin { \cfrac { z }{ 2 }  }  }{ \cos { \cfrac { z }{ 2 }  }  }  } .\cfrac { 1 }{ 2\cos ^{ 2 }{ \cfrac { z }{ 2 }  }  } dz } $

$=\cfrac { 1 }{ 2 } \int _{ 0 }^{ \pi /2 }{ \cfrac { z }{ 2\sin { \cfrac { z }{ 2 }  } \cos { \cfrac { z }{ 2 }  }  }  } dz$

$=\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { z }{ \sin { z }  }  } dz=\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { x }{ \sin { x }  }  } dx$

Evaluate $\displaystyle\int^{\frac{3}{2}} _{-1}|x\sin(\pi x)|dx$.

  1. $\dfrac {3}{\pi} +\dfrac {1}{\pi^2}$

  2. $3\pi +\pi^2$

  3. $\dfrac { 2 }{ \pi } +\dfrac { 1 }{ { \pi }^{ 2 } }$

  4. none of the above


Correct Option: A
Explanation:

$|x\sin(\pi x)|=\begin{cases}x\sin \pi x ,\,\,\,\,x\in(-1,1)\  -x\sin\pi x,x\in (1,\dfrac{3}{2})  \end{cases}$

$\displaystyle \int _{ 1 }^{ \frac { 3 }{ 2 }  }{ |x\sin(\pi x)| }dx=\int _{ -1 }^{ 1  }{ x\sin(\pi x)dx }+\int _{ 1 }^{ \frac { 3 }{ 2 }  }{ -x\sin(\pi x)dx }$

$=\displaystyle \left|\dfrac{-x\cos\pi x}{\pi}\right|^1 _{-1}-\int _{- 1 }^{ 1  }{ \left(\dfrac{-\cos\pi x}{\pi}dx\right) }-\left[\left|\dfrac{-x\cos (\pi x)}{\pi}\right|^{\dfrac{3}{2}} _1-\int _{ 1 }^{ \frac { 3 }{ 2 }  }{ \dfrac{-\cos x }{\pi}dx } \right] $ 

$=\dfrac{1}{\pi}-\left(\dfrac{-1}{\pi}\right)+0-\left[\dfrac{-1}{\pi}-(\dfrac{1}{\pi^2})\right]$

$=\dfrac{1}{\pi}+\dfrac{1}{\pi}+\dfrac{1}{\pi}+\dfrac{1}{\pi^2}$

$=\dfrac{3}{\pi}+\dfrac{1}{\pi^2}$  

$\int _{ 0 }^{ \infty  }{ f\left( x+\cfrac { 1 }{ x }  \right) .\cfrac { \ln { x }  }{ x }  } dx$

  1. Is equal to zero

  2. Is equal to one

  3. Is equal to $\cfrac { 1 }{ 2 } $

  4. Can not be evaluated


Correct Option: A
Explanation:

Let: $lnx=t \Rightarrow x=e^{t}$
$\Rightarrow \dfrac{1}{x}dx=dt$

As "x" varies from $0$ to $\infty$ "$lnx $  $[t]$" varies $-\infty$ to $\infty$.
Now,
$\int _{0}^{\infty}f(x+\dfrac{1}{x}).\dfrac{lnx}{x}dx$

$\Rightarrow \int _{-\infty}^{\infty}f(e^{t}+e^{-t}).tdt = F(t)$

Now,
Using properties of definite integral:
Here we can see above function is an odd function i.e $F(-t)=-F(t)$
therefore on integrating from $-\infty$ to $\infty$ sum of area of $odd$ $function$ is $zero.$
$\Rightarrow \int _{-\infty}^{\infty}f(e^{t}+e^{-t}).tdt =0$

Thus,
$\int _{0}^{\infty}f(x+\dfrac{1}{x}).\dfrac{lnx}{x}dx=0$
Hence, correct option is $"A"$

Evaluate $I = \displaystyle \int _{\pi /6}^{\pi /3}\sin x:dx$

  1. $\displaystyle \frac{1-\sqrt{3}}{2}$

  2. $\displaystyle \frac{\sqrt{3}+1}{2}$

  3. $\displaystyle \frac{\sqrt{3}-1}{2\sqrt{3}}$

  4. None of these


Correct Option: A
Explanation:
Given : $I = \displaystyle \int _{\pi /6}^{\pi /3}\sin x\:dx$

Integeration of $\sin x dx$ is $-cos x dx + c$

$I = -cos x dx$

Substuting the upper and lower limit values we get,

$I = -cos\dfrac{\pi}{3}+cos\dfrac{\pi}{6}$

$I = \dfrac{-\sqrt{3}}{2} + \dfrac{1}{2}$

$I = \dfrac{1-\sqrt{3}}{2}$

What is $\displaystyle \int _{ 0 }^{ \pi  }{ { e }^{ x } } \sin { x } dx$ equal to?

  1. $\cfrac { { e }^{ \pi }+1 }{ 2 } $

  2. $\cfrac { { e }^{ \pi }-1 }{ 2 } $

  3. ${ e }^{ \pi }+1$

  4. $\cfrac { { e }^{ \pi }+1 }{ 4 } $


Correct Option: A
Explanation:

Using Integration by part$:-$

Considering 1st function $u(x)=sinx$ and 2nd function $v(x)=e^x$
Now using Integration by parts$:-$

$\int _{0}^{\pi}e^xsinxdx=sinx\int _{0}^{\pi}e^xdx-\int _{0}^{\pi}\left (\dfrac{d}{dx}(sinx)\int _{0}^{\pi}e^x  \right )$

$\Rightarrow \int _{0}^{\pi}e^xsinxdx=(sinx\times e^x)| _{0}^{\pi}-\int _{0}^{\pi}\left (cosx e^xdx  \right )$
 
Again using Integration by parts:-
$\Rightarrow \int _{0}^{\pi}e^xsinxdx=(0\times e^\pi-0\times 1)-\int _{0}^{\pi}\left (cosx e^xdx  \right )$

$\Rightarrow \int _{0}^{\pi}e^xsinxdx=(0\times e^\pi-0\times 1)-\left (cosx\int _{0}^{\pi}e^xdx-\int _{0}^{\pi}\dfrac{d}{dx}(cosx)\int _{0}^{\pi}e^xdx \right )$

$\Rightarrow \int _{0}^{\pi}e^xsinxdx=-(cosx\times e^x)| _{0}^{\pi}-\int _{0}^{\pi}\left (sinx e^xdx  \right )         \left \langle \because \dfrac{d}{dx}(cosx)=-sinx  \right \rangle$

$\Rightarrow \int _{0}^{\pi}e^xsinxdx+\int _{0}^{\pi}\left (sinx e^xdx  \right )=-(cosx\times e^x)| _{0}^{\pi}$

$\Rightarrow 2\int _{0}^{\pi}e^xsinxdx=-(-1\times e^\pi-1\times 1)$

$\Rightarrow \int _{0}^{\pi}e^xsinxdx=\dfrac{e^\pi+1}{2}$