Tag: energetics and thermochemistry
Questions Related to energetics and thermochemistry
Using the data provided, calculate the multiple bond energy ($kJ{ mol }^{ -1 }$) of $C\equiv C$ bond in ${C} _{2}{H} _{2}$. That energy is (take the bond energy of a $C-H$ bond as $350kJ{ mol }^{ -1 }$):
$2C(s)+{ H } _{ 2 }(g)\longrightarrow { C } _{ 2 }{ H } _{ 2 }(g);\Delta { H }^{ }=225kJ{ mol }^{ -1 }$
$2C(s)\longrightarrow 2C(g);\Delta { H }^{ }=1410kJ{ mol }^{ -1 }\quad $
${H} _{2}(g)\longrightarrow 2H(g);\Delta { H }^{ }=330kJ{ mol }^{ -1 }\quad $
Given that, bond energies of $H-H$ and $Cl-Cl$ ar $430kJ/mol$ and $240kJ/mol$ respectively. $\Delta {H} _{f}$ for $HCl$ is $-90kJ/mol$. Bond enthalpy of $HCl$ is:
If values of $\Delta { H } _{ f }^{ o }$ of $ICl(g),\, Cl(g),\, I(g)$ are respectively $17.57,\,121.34,\,106.96$ J mol $^{-1}$. The value of $I-Cl$ (bond energy) in J mol $^{-1}$ is:
The bond dissociation energies for single covalent bonds formed between carbon and $A,B,C,D$ and $E$ atoms are:
Bond | Bond energy $kcal{ mol }^{ -1 }$ |
---|---|
(i) $C-A$ | $240$ |
(ii) $C-B$ | $382$ |
(iii) $C-D$ | $276$ |
(iv) $C-E$ | $486$ |
This indicates that the smallest atom is:
Given the bond dissociation energies below (in kcal/mole), estimate the $\Delta { H }^{ o }$ for the propagation step
${ \left( { CH } _{ 3 } \right) } _{ 2 }CH+{ Cl } _{ 2 }\longrightarrow { \left( { CH } _{ 3 } \right) } _{ 2 }CHCl+Cl$
${ CH } _{ 3 }{ CH } _{ 2 }{ CH } _{ 2 }-H$ | $98$ |
---|---|
${ \left( { CH } _{ 3 } \right) } _{ 2 }CH-H$ | $95$ |
$Cl-Cl$ | $58$ |
$H-Cl$ | $103$ |
${ CH } _{ 3 }{ CH } _{ 2 }{ CH } _{ 2 }-Cl$ | $81$ |
${ \left( { CH } _{ 3 } \right) } _{ 2 }CH-Cl$ | $80$ |
Given the bond dissociation energies below (in $kcal$ /mole), estimate the $\triangle H^{\circ}$ for the propagation step
$(CH _{3}) _{2} CH + Cl _{2}\rightarrow (CH _{3}) _{2} CHCl + Cl$
$CH _{3} CH _{2}CH _{2} - H \ 98$
$(CH _{3}) _{2} CH - H \ 95$
$Cl - Cl\ 58$
$H-Cl\ 103$
$CH _{3}CH _{2}CH _{2} - Cl\ 81$
$(CH _{3}) _{2} CH - Cl \ 80$
If the bond energies of $H-H,\ Br-Br$ and $H-Br$ are 433, 192 and 364 $kJ \, mol^{-1}$ respectively, $\Delta H$ for the reaction $H _{2(g)}+BR _{2(g)}\rightarrow 2HBr _{(g)}$ is:
$NO(g) + O _{3}(g)\rightarrow NO _{2}(g) + O _{2}(g)\ triangle H = -198.9\ kJ/mol$
$O _{3}(g) \rightarrow 3/2\ O _{2}(g) \ \triangle H = -142.3\ kJ/mol$
$O _{2}(g) \rightarrow 2O(g) \ \triangle H = +495.0\ kJ/mol$
$NO(g) + O(g)\rightarrow NO _{2}(g)$
$H-H$ bond energy: $431.37kJ\quad { mol }^{ -1 }$
$C=C$ bond energy: $606.10kJ\quad { mol }^{ -1 }\quad $
$C-C$ bond energy: $336.49kJ\quad { mol }^{ -1 }$
$C-H$ bond energy: $410.50kJ\quad { mol }^{ -1 }$
Enthalpy for the reaction will be:
If, $C(s)+2H _2(g)\rightarrow CH _4(g); \triangle H= -X _1 kcal$
$C(g)+4H(g)\rightarrow CH _4(g); \triangle H = -X _2 kcal$
$CH _4(g) \rightarrow CH _3(g)+H(g); \triangle H = +Y kcal$
The average bond energy of C-Hbond in kcal $mol^{-1}$ is :