Tag: energetics and thermochemistry

Questions Related to energetics and thermochemistry

${ K } _{ C }$ for ${ 3 }/{ 2{ H } _{ 2 }+{ 1 }/{ 2{ N } _{ 2 }\rightleftharpoons  } }{ NH } _{ 3 }$ are 0.0266 and $0.0129\,{ atm }^{ -1 }\quad $ respectively, at 350$^o$C and 400$^o$C. Calculate the heat of formation of ${ NH } _{ 3 }$.

  1. $\therefore \triangle H =\,-50462\quad cal$

  2. $\therefore \triangle H=\,-8133\quad cal$

  3. $\therefore \triangle H =\,12140\quad cal$

  4. $\therefore \triangle H=\,-12140\quad cal$


Correct Option: D
Explanation:

As we know,
$2.303\,log[\displaystyle\frac { { K } _{ { P } _{ 2 } } }{ { K } _{ { P
} _{ 1 } } }] =\frac { \triangle H }{ R } \left[ \frac { { T } _{ 2 }-{ T
} _{ 1 } }{ { T } _{ 1 }{ T } _{ 2 } }  \right] $
$2.303\,log[\displaystyle\frac
{ 0.0129 }{ 0.0266 }] =\frac { \triangle H }{ 2 } \left[ \frac {
673-623 }{ 673\times 623 }  \right] $
$\therefore \triangle H=\,12140\quad cal\quad =\,-12140\quad cal$

For the equilibrium at $298$ K; $N _2O _4(g)\rightleftharpoons 2NO _2(g); G _{N _2O _4}^{\ominus}=100 kJ mol^{-1}$ and $G _{NO _2}^{\ominus}=50 kJ mol^{-1}$. If 5 mol of $N _2O _4$ and 2 moles of $NO _2$ are taken initially in one litre container than which statement are correct

  1. reaction proceeds in forward direction

  2. $K _c=1$

  3. $\Delta G=-0.55 kJ, \Delta G^{\ominus}=0$

  4. At equilibrium $[N _2O _4]=4.84 M$ and $[NO _2]=0.212 M$


Correct Option: A,B,C
Explanation:

$\Delta G=\Delta G^{\ominus}+2.303 RT:log Q$

$\Delta G^{\ominus}=2\times G _{NO _2}^{\ominus}-G _{N _2O _4}^{\ominus}=2\times 50-100=0$

$\therefore \Delta G=0+2.303\times 8.314\times 10^{-3}\times 298: log \displaystyle\frac {22}{5}=0-0.55 kJ$

$\therefore \Delta G=-0.55 kJ$, i.e, reaction proceeds in forward direction

Also $\Delta G^{\ominus}=0=2.303 RT:log K \therefore K=1$

Now, $\underset {\underset {5-x}{5}}{N _2O _4}=\underset {\underset {2+2x}{2}}{2NO _2}$

$\therefore K _p=\frac {(P _{NO _2})}{(P _{N _2O _4})}=1=\frac {(2+2x)^2}{5-x}$ or  $x=0.106$


So, $[N _2O _4]=5-x=4.894M,\ [NO _2]=2+2x=2.12M$

Hence, options A, B and C are correct.

The equilibrium constant is $10$ at $100 K$. Hence, $\Delta G$ will be negative.
  1. True

  2. False


Correct Option: A
Explanation:

The equilibrium constant is 10 at 100 K. Hence, $\Delta G$ will be negative.
$\Delta G = -RTlnK = -RTln10 = -RT \times 2.303$ Since R and T are positive, $\Delta G$ is negative.

Which are true for the reaction: $A _2\rightleftharpoons 2C+D$?

  1. If $\Delta H=0; K _p$ increases with temperature and dissociation temperature.

  2. If $\Delta H=+ve; K _p$ increases with temperature and dissociation of $A _2$ increases.

  3. If $\Delta H=-ve; K _p$ increases with temperature and dissociation of $A _2$ decreases.

  4. $K _p=4\alpha^3\left [\frac {P}{1+2\alpha}\right ]^2$


Correct Option: A,B,C,D
Explanation:

Initial At equilibrium
$\underset {\underset {1-\alpha}{1}}{A _2}\rightleftharpoons \underset {\underset {2\alpha}{0}}{2C}+\underset {\underset {\alpha}{0}}{D}$
$K _p=(2\alpha)^2\alpha \times \left [\frac {P}{\Delta n}\right ]^2=\frac {4\alpha^3P^2}{(1+2\alpha)^2}$
Also, as we know
2.303 log $\frac {K _2}{K _1}=\frac {\Delta H}{R}\left [\frac {T _2-T _1}{T _1T _2}\right ]$ for effect temperature on K.
If $\Delta H=+ve; K _p$ increases with temperature and dissociation of $A _2$ increases.
If $\Delta H=-ve; K _p$ decreases with temperature and dissociation of $A _2$ decreases.

Concrete is produced from a mixture of cement, water and small stones. Small amount of gypsum, $CaSO _4\cdot 2H _2O$ is added in cement production to improve the subsequent hardening of concrete. 
The elevated temperature during the production of cement may lead to the formation of unwanted hemihydrate $CaSO _4\cdot \frac { 1 }{ 2 }H _2O$ according to reaction.

$CaSO _4\cdot 2H _2O(s)\rightarrow CaSO _4\cdot \frac { 1 }{ 2 }H _2O(s) + \frac { 3 }{ 2 }H _2O(g)$
The $\Delta _f H^{ \ominus }$ of $CaSO _4\cdot 2H _2O(s),\ CaSO _4\frac { 1 }{ 2 }H _2O(s),\ H _2O(g)$ are $-2021.0  kJ  mol^{ -1 }$, $-1575.0  kJ  mol^{ -1 }$ and $-241.8  kJ  mol^{ -1 }$ respectively. The respective values of their standard entropies are $194.0$, $130.0$ and $188.0  J  K^{ -1 }  mol^{ -1 }.$ 
$R = 8.314  J  K^{ -1 }  mol^{ -1 } = 0.0831  L  bar  mol^{ -1 }  K^{-1}$
Answer the follwoing questions on the basis of above information.
The value of equilibrium constant for reaction is:

  1. 0

  2. <1

  3. >1

  4. =1


Correct Option: B
Explanation:

$\Delta H^{ \ominus } = \Delta H^{ \ominus } _ { P } - \Delta H^{ \ominus } _{ R }; (for\quad 1\quad mol)$
$= \left[ -1575.0 kJ mol^{ -1 }-\frac { 3 }{ 2 } \times 241.8 \right] -\left[ -2021.0 kJ mol^{ -1 } \right] $
$= +83.3 kJ mol^{ -1 }$
For 1 Kg $CaSO _4\cdot 2H _2O$
Numebr of moles $=\frac { 1000}{ 172 }$
$= 5.81$
$\therefore$ Heat change for $5.81\quad mol\quad of\quad CaSO _4\cdot 2H _2O = 5.81\times 83.3 kJ mol^{ -1 }$
$=484 kJ mol^{ -1 }$
$\Delta G = \Delta H - T\Delta S$
$= 17.92 kJ$ ........ $(\Delta S = S _P - S _R)$
$\Delta G = -nRTln K$
$\therefore$ $K = e^{ -\Delta GlnRT } < 1$

${\Delta G ^{0}}$ is related to K by the relation _____.

  1.  ${\Delta G ^{0}}$ =$ -RT: InK^{2}$.

  2.  ${\Delta G ^{0}}$ =$ -RTK$.

  3.  ${\Delta G ^{0}}$ =$ RT: InK$.

  4.  ${\Delta G ^{0}}$ =$ -RT: InK$.


Correct Option: D
Explanation:
$G=G^o+RTlnK$.

$G^o$ is standard Gibbs energy. At equillibrium when there is no longer free energy left to drive the reaction then $\Delta G=0, \Delta G^o=-RTlnK$ 

The correct relationship between free energy change in a reaction and the corresponding equilibrium constant $K$ is 

  1. $-\Delta G=RT:\ln:K$

  2. $\Delta G^{o}=RT:\ln:K$

  3. $\Delta G=-RT:\ln:K$

  4. $-\Delta G^{o}=RT:\ln:K$


Correct Option: C
Explanation:

The correct relationship between free energy change in a reaction and the corresponding equilibrium constant K is $-\Delta G=RT:ln:K$ or $\Delta G=-RT:ln:K$

$\Delta G = \Delta G^{ \ominus } + RT log K$
  1. True

  2. False


Correct Option: A
Explanation:

As we know,
$\Delta G = \Delta H - T\Delta S$
Also, 
$\Delta G = \Delta G^{ \ominus } + RT log K$
and at equilibrium,
$\Delta G = 0$ so
$\Delta G^{ \ominus } = - RT log K$

For the reaction at $298 K$


$A (g) + B (g)\rightleftharpoons C (g) + D (g)$

$\Delta H^o = 29.8 kcal ; \Delta S^o = 0.1 kcal/K$

Calculate $\Delta G^o$ and $K$.

  1. $\Delta G^o = 0 ; K = 1$

  2. $\Delta G^o = 1 ; K = e$

  3. $\Delta G^o = 2 ; K = e^2$

  4. None of these


Correct Option: A
Explanation:

As we know,


$\Delta G^o = \Delta H^o - T\Delta S^o$ 

         $= 29.8 - ( 298\times0.1 )$

         $= 29.8-29.8=0$

Therefore, $\Delta G^o = 0$

The relation between $\Delta G^0 $ and $K$

$\Delta G^0$ = $ - RT lnK$

$K = 1 $

So, the correct option is $A$

When $\displaystyle \Delta G$ is zero :

  1. reaction moves in forward direction

  2. reaction moves in backward direction

  3. system is at equilibrium

  4. none of these


Correct Option: C
Explanation:

When $\displaystyle \Delta G$ is zero, system is at equilibrium.
Positive free energy change corresponds to non spontaneous reaction.
Negative free energy change corresponds to spontaneous reaction.