Tag: elastic energy

Questions Related to elastic energy

The poisson's ratio can not be

  1. $-1$

  2. $0$

  3. $0.25$

  4. $0.5$


Correct Option: C

A cube of wood supporting $200 gm$ mass just in water $(\rho =1g/cc)$. When the mass is removed, the cube rises by $2cm$. The volume of cube is

  1. $1000 cc$

  2. $800cc$

  3. $500 cc$

  4. None of these


Correct Option: D
Explanation:
Let the edge of cube be $L$ when mass is on the cube of wood 
$200g+{ L }^{ 3 }{ d } _{ wood }g={ L }^{ 3 }{ d } _{ water }g$
$\Rightarrow { L }^{ 3 }{ d } _{ wood }g={ L }^{ 3 }{ d } _{ water }g$
$\Rightarrow { L }^{ 3 }{ d } _{ wood }g={ L }^{ 3 }{ d } _{ water }g-200g$
$\Rightarrow { L }^{ 3 }{ d } _{ wood }={ L }^{ 3 }d-200$
When mass is removed
${ L }^{ 3 }{ d } _{ wood }-\left( L-2 \right) { L }^{ 2 }{ d } _{ water }\quad \longrightarrow \left( 2 \right) $
From $(1)$ and $(2)$
${ L }^{ 3 }{ d } _{ water }-200=\left( L-2 \right) { L }^{ 2 }{ d } _{ water }$
But ${ d } _{ water }=1$
$\therefore$    ${ L }^{ 3 }-200={ L }^{ 2 }\left( L-2 \right) $
$\therefore$    $L=10cm$.

what is the ratio of Youngs modulus $E$ to shear modulus $G$ in terms of poissons ratio$?$

  1. $2\left( {1 + \mu } \right)$

  2. $2\left( {1 - \mu } \right)$

  3. $\frac{1}{2}\left( {1 - \mu } \right)$

  4. $\frac{1}{2}\left( {1 + \mu } \right)$


Correct Option: A
Explanation:

As we know$:-$

$G = \frac{E}{{2\left( {1 + \mu } \right)}}$ 
so this gives the ratio of $E$ to $G = 2\left( {1 + \mu } \right)$
Hence,
option $(A)$ is correct answer.

For a given material, the Young's modulus is 2.4 times its modulus of rigidity. Its Poisson's ratio is

  1. $0.2$

  2. $0.4$

  3. $1.2$

  4. $2.4$


Correct Option: A
Explanation:

$Y = 2\eta \left( {1 + \sigma } \right)$

But $Y = 2.4\eta $
$\therefore 2.4\eta  = 2\eta \left( {1 + \sigma } \right)$
$\left( {1 + \sigma } \right) = 1.2$
$\sigma  = 0.2$
Hence,
option $(A)$ is correct answer.

When a wire is stretched, its length increases by $0.3$% and the diameter decreases by $0.1$%. Poisson's ratio of the material of the wire is about   

  1. $0.03$

  2. $0.333$

  3. $0.15$

  4. $0.015$


Correct Option: C

If rigidity modulus is 2.6 times of youngs modulus then the value of poission's ratio is 

  1. 0.2

  2. 0.3

  3. 0.5

  4. 0.1


Correct Option: B

When a rubber cord is stretched, the change in volume with respect to change in its linear dimensions is negligible. The Poisson's ratio for rubber is 

  1. 1

  2. 0.25

  3. 0.5

  4. 0.75


Correct Option: C
Explanation:

$V = \pi {r^2}I$

$\frac{{\Delta V}}{V} = \frac{{\Delta \left( {\pi {r^2}I} \right)}}{{\pi {r^2}I}}$
$\frac{{\Delta V}}{V} = \frac{{{r^2}\Delta I + 2rI\Delta r}}{{{r^2}I}}$
$\frac{{\Delta V}}{V} = \frac{{\Delta I}}{I} + \frac{{2\Delta r}}{r}$
But $\frac{{\Delta V}}{V} = 0$
therefore$,$ $\frac{{\Delta I}}{I} = \frac{{ - 2\Delta r}}{r}$
Now$,$ Poisson's ratio$,$ $\sigma  = \frac{{\frac{{ - \Delta r}}{r}}}{{\frac{{\Delta I}}{I}}}$-------------------$(1)$
from equation $(1),$
$\sigma  =  - \left( {\frac{{\frac{{\Delta r}}{r}}}{{\frac{{ - 2\Delta r}}{r}}}} \right) = \frac{1}{2} = 0.5$
Hence,
option $(C)$ is correct answer.

For a given material, the Youngs modulas is $2.4$ times its modulus of rigidity. What is the value of its poissons ratio ?

  1. $0.5$

  2. $0.4$

  3. $0.2$

  4. $0.3$


Correct Option: A

The ratio of change in dimension at right angles to applied force to the initial dimension is defined as

  1. $Y$

  2. $\eta$

  3. $\beta$

  4. $K$


Correct Option: C
Explanation:

This is a factual question. The ratio is labelled $\beta$.

Which of the following pairs is not correct?

  1. strain-dimensionless

  2. stress-$N/m^{2}$

  3. modulus of elasticity-$N/m^{2}$

  4. poisson's ratio-$N/m^{2}$


Correct Option: D
Explanation:

stress is $\dfrac{F}{A}$ hence unit $N/m^2$

strain is $\dfrac{\Delta l}{L}$ so unit $m/m$ therefore dimensionless
modulus of elasticity is $ \dfrac{stress}{strain}$ hence same unit  as stress as the denominator is dimensionless
poisson's ratio $\dfrac{-\epsilon _t}{\epsilon _l} $ so its also going to be dimensionless