Tag: two dimensional analytical geometry-ii
Questions Related to two dimensional analytical geometry-ii
Let $P\left( a\sec { \theta } ,b\tan { \theta } \right) $ and $Q\left( a\sec { \phi } ,b\tan { \phi } \right) $, where $\theta +\phi =\dfrac {\pi}{2} $, be the two points on the hyperbola $\cfrac { { x }^{ 2 } }{ { a }^{ 2 } } -\cfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$. If $(h,k)$ is the point of intersection of the normals of $P$ and $Q$, then $k$ is equal to
If a normal of slope $m$ to the parabola ${ y }^{ 2 }=4ax$ touches the hyperbola ${ x }^{ 2 }-{ y }^{ 2 }={ a^2 }$, then
If a normal of slope $m$ to the parabola $y^2 = 4ax$ touches the hyperbola $x^2 - y^2 = a^2$, then
Let P $(asec \theta,\, btan \theta)$ and Q $(asec \phi,\, btan \phi)$, where $\theta\, +\, \phi\, =\, \displaystyle \frac{\pi}{2}$, be two points on the hyperbola $\displaystyle \frac{x^2}{a^2}\, -\, \frac{y^2}{b^2}\, =\, 1$. If (h, k) is the point of intersection of the normals at P & Q, then k is equal to
From any point R two normals which are right angled to one another are drawn to the hyperbola $\displaystyle \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1,\left ( a>b \right )$ If the feet of the normals are P and Q then the locus of the circumcentre of the triangle PQR is
If a normal is drawn at point $P$ of ellipse $ \dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=1$, then the maximum distance from centre of ellipse will be $a-b$
If the normal at any point $P$ of the ellipse $\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$ meets the axes in $G$ and $g$ respectively, then $|PG| : |Pg|$ is equal to
One foot of normal of the ellipse $4x^2$ $+$ 9$y^2$ $= 36 $, that is parallel to the line $2x + y = 3 $, is
If the normal at any point on the ellipse $\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$ meets the axes in $G$ and $g$ respectively, then $PG:Pg=$
The equation of normal at the point $(0, 3)$ of the ellipse $9x^2 + 5y^2 = 45$ is