Tag: two dimensional analytical geometry-ii
Questions Related to two dimensional analytical geometry-ii
The equation of the normal to the ellipse $\displaystyle\frac{x^2}{a^2}\,+\,\frac{y^2}{b^2}\,=\,1$ at the positive end of latus rectum is :
Area of the triangle formed by the ${x}$ axis, the tangent and normal at $(3,2)$ to the ellipse $\displaystyle \frac{x^{2}}{18}+\frac{y^{2}}{8}=1$ is
Find the area of the rectangle formed by the perpendiculars from the center of the ellipse $\displaystyle \frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1$ to the tangent and normal at a point whose eccentric angle is $\displaystyle\frac{\pi}{4}.$
Assertion (A): Equation of the normal to the ellipse $\displaystyle \frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ at $P(\displaystyle \frac{\pi}{4})$ is $5x-3y-8\sqrt{2}=0$
Reason (R): Equation of the normal to the ellipse $\displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $P(x _{1},y _{1})$ is $\displaystyle \frac{a^{2}x}{x _1}-\frac{b^{2}y}{y _1}=a^{2}-b^2$
The maximum distance of any normal to the ellipse $\displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from the centre is:
The maximum distance of the normal to the ellipse $\displaystyle \frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{4}=1$ from its centre is:
lf the tangent drawn at a point $(t^{2},2t)$ on the parabola $y^{2}=4x$ is same as normal drawn at $(\sqrt{5}\cos\alpha, 2\sin\alpha)$ on the ellipse $\displaystyle \frac{x^{2}}{5}+\frac{y^{2}}{4}=1$, then which of following is not true?
If the line $x\cos { \alpha } +y\sin { \alpha } =p$ be normal to the ellipse $\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$, then
If the line $x \cos a + y \sin a = p$ be normal to the ellipse $\dfrac{x^2}{a^2}$ $+\dfrac{y^2}{b^2}$ = 1 then
If the normal at the point $P(\theta)$ to the ellipse $\dfrac {x^{2}}{14} + \dfrac {y^{2}}{5} = 1$ intersects it again at the point $Q(2\theta)$, then $\cos \theta$ is equal to