Tag: ellipse

Questions Related to ellipse

The total number of real tangents that can be drawn to the ellipse $3x^{2}+5y^{2}=32$ and $25x^{2}+9y^{2}=450$ passing through $(3,5)$ is

  1. $0$

  2. $2$

  3. $3$

  4. $4$


Correct Option: C
Explanation:

$(3,5)$ lies on $25x^2+9y^2=450$

Therefore, one tangent can be drawn

and $(3,5)$ lies outside $3x^2+5y^2=32$ because $S _1>0$

Therefore, two tangents can be drawn.
So total 3 tangents

$\mathrm{S}$ and $\mathrm{S}^{'}$ are the foci of the ellipse $25x^{2}+16y^{2}=1600$, then the sum of the distances from $\mathrm{S}$ and $\mathrm{S}'$ to the point $(4\sqrt{3},5)$ is:

  1. $20$

  2. $15$

  3. $40$

  4. $30$


Correct Option: A
Explanation:

Given ellipse is $25{ x }^{ 2 }+16{ y }^{ 2 }=1600$

This can be written as $\displaystyle \frac { { x }^{ 2 } }{ 64 } +\frac { { y }^{ 2 } }{ 100 } =1$
Compare it to standard form of ellipse to get $a=8,b=10$
here $a<b$
So eccentricity e$=\sqrt { 1-\displaystyle \frac { { a }^{ 2 } }{ { b }^{ 2 } }  } =\sqrt { 1-\displaystyle\frac { 64 }{ 100 }  } =\displaystyle \frac { 3 }{ 5 } $
Now the foci are given by $\left( 0,\pm \sqrt { { b }^{ 2 }-{ a }^{ 2 } }  \right) $
So $foci:\left( 0,\pm \sqrt { 36 }  \right) $
$S:\left( 0,6 \right) ,{ S } _{ 1 }:\left( 0,-6 \right) $
Now find distance of $S$ and ${ S } _{ 1 }$ from the given point $\left( 4\sqrt { 3 } ,5 \right) $
So sum$=\sqrt { { \left( 4\sqrt { 3 }  \right)  }^{ 2 }+1 } +\sqrt { { \left( 4\sqrt { 3 }  \right)  }^{ 2 }+{ \left( 11 \right)  }^{ 2 } } =7+13=20$

The length of the latusrectum of the parabola $169\left{ { \left( x-1 \right)  }^{ 2 }+{ \left( y-3 \right)  }^{ 2 } \right} ={ \left( 5x-12y+17 \right)  }^{ 2 }$

  1. $\cfrac { 14 }{ 13 } $

  2. $\cfrac { 28 }{ 13 } $

  3. $\cfrac { 12 }{ 13 } $

  4. None of these


Correct Option: B
Explanation:

Here ${ \left( x-1 \right)  }^{ 2 }+{ \left( y-3 \right)  }^{ 2 }={ \left{ \cfrac { 5x-12y+17 }{ \sqrt { { 5 }^{ 2 }+{ \left( -12 \right)  }^{ 2 } }  }  \right}  }^{ 2 }$


$\therefore$ The focus is $(1,3)$ and the directrix is $5x-12y+17=0$

The distance of the focus from the directrix

$=\left| \cfrac { 5\times 1-12\times 3+17 }{ \sqrt { { 5 }^{ 2 }+{ \left( -12 \right)  }^{ 2 } }  }  \right| =\cfrac { 14 }{ 13 } $

$\therefore$ Length of latusrectum $=2\times \cfrac { 14 }{ 13 } =\cfrac { 28 }{ 13 } $

The equation of the ellipse having vertices at $\displaystyle \left( \pm 5,0 \right) $ and foci $\displaystyle \left( \pm 4,0 \right) $ is

  1. $\displaystyle \frac { { x }^{ 2 } }{ 25 } +\frac { { y }^{ 2 } }{ 16 } =1$

  2. $\displaystyle 9{ x }^{ 2 }+25{ y }^{ 2 }=225$

  3. $\displaystyle \frac { { x }^{ 2 } }{ 9 } +\frac { { y }^{ 2 } }{ 25 } =1$

  4. $\displaystyle 4{ x }^{ 2 }+5{ y }^{ 2 }=20$


Correct Option: B
Explanation:

The vertices and foci of an ellipse are $\displaystyle \left( \pm 5,0 \right) $ and $\displaystyle \left( \pm 4,0 \right) $ respectively.
$\displaystyle \therefore \quad a=5$ and $\displaystyle ae=4$
$\displaystyle \Rightarrow \quad e=\frac { 4 }{ 5 } $
We know that,
$\displaystyle e=\sqrt { 1-\frac { { b }^{ 2 } }{ { a }^{ 2 } }  } $
$\displaystyle \Rightarrow \quad \frac { 16 }{ 25 } =1-\frac { { b }^{ 2 } }{ 25 } \Rightarrow { b }^{ 2 }=9$
Hence, equation of an ellipse is
$\displaystyle \frac { { x }^{ 2 } }{ 25 } +\frac { { y }^{ 2 } }{ 9 } =1\Rightarrow 9{ x }^{ 2 }+25{ y }^{ 2 }=225$

The sum of the focal distances of any point on the conic $\dfrac {x^{2}}{25} + \dfrac {y^{2}}{16} = 1$ is

  1. $10$

  2. $9$

  3. $41$

  4. $18$


Correct Option: A
Explanation:

We know, if P is any point on the curve, then Sum of focal distances $=$ length of major axis
i.e., $SP + S'P = 2a$
$= 2(5) [\because a^{2} = 5^{2}]$
$= 10$

The graph of the equation $x^2+\dfrac{y^2}{4}=1$ is

  1. an ellipse

  2. a circle

  3. a hyperbola

  4. a parabola

  5. two straight lines


Correct Option: A
Explanation:

Given, ${x}^{2}+\dfrac{{y}^{2}}{4}=1$
It is in the form of  $ \dfrac{{x}^{2}}{{a}^{2}}+\dfrac{{y}^{2}}{{b}^{2}}=1$
Therefore, it represents an ellipse.

The graph of the equation $4y^2 + x^2= 25$ is

  1. a circle

  2. an ellipse

  3. a hyperbola

  4. a parabola

  5. a straight line


Correct Option: B
Explanation:

Given, $4{y}^{2}+{x}^{2}=25$

$\Rightarrow \dfrac { { y }^{ 2 } }{ 25/4 } +\dfrac { { x }^{ 2 } }{ 25 } =1$
It is in the form of ellipse $\left (\dfrac { { y }^{ 2 } }{ {a}^{2} } +\dfrac { { x }^{ 2 } }{ {b}^{2} } =1\right)$
So, the correct answer is option $B$.

Latus rectum of the conic satisfying the differential equation $x dy+y dx=0$ and passing through the point $(2,8)$ is :

  1. $4\sqrt{2}$

  2. $8$

  3. $8\sqrt{2}$

  4. $16$


Correct Option: C
Explanation:

The differential equation is

$xdy+ydx=0$
$d(xy)=0$
By integrating we get,
$xy=k$..........(1)

Equation (1) passes through the point $(2,8)$, so
$(2)(8)=k$
$k=16$

So, equation of the conic is 
$xy=16$
which is a rectangular hyperbola $(xy=c^{2})$, where $c=4$

Length of latus rectum for rectangular hyperbola is $2\sqrt{2}c=8\sqrt{2}$
 





The foci of an ellipse are located at the points $(2, 4)$ and $(2, -2)$. The points $(4, 2)$ lies on the ellipse. If $a$ and $b$ represent the lengths of the semi-major and semi-minor axes respectively, then the value of $(ab)^{2}$ is equal to

  1. $68 + 22\sqrt {10}$

  2. $6 + 22\sqrt {10}$

  3. $26 + 10\sqrt {10}$

  4. $6 + 10\sqrt {10}$


Correct Option: C
Explanation:

The distance between the foci is $6$, so $c = 3$.
The sum of the distance from $(4, 2)$ to each of the foci is the major axis length,
so
$2a = \sqrt {(4 - 2)^{2} + (2 - 4)^{2}} + \sqrt {(4 - 2)^{2} + (2 + 2)^{2}}$
$= \sqrt {4 + 4} + \sqrt {4 + 16} = \sqrt {8} + \sqrt {20}$
$= 2\sqrt {2} + 2\sqrt {5} \Rightarrow a = \sqrt {2} + \sqrt {5}$
Also, for an ellipse,
$b^{2} = a^{2} - c^{2} = (\sqrt {2} + \sqrt {5})^{2} - 3^{2}$
$= 7 + 2\sqrt {10} = -2 + 2\sqrt {10}$.
Thus, we have
$(ab)^{2} = (7 + 2\sqrt {10})(-2 + 2\sqrt {10})$
$= -14 + 14\sqrt {10} - 4\sqrt {10} + 40$
$= 26 + 10\sqrt {10}$.

Which of the following is/are not false?

  1. The mid point of the line segment joining the foci is called the centre of the ellipse.

  2. The line segment through the foci of the ellipse is called the major axis.

  3. The end points of the major axis are called the vertices of the ellipse.

  4. Ellipse is symmetric with respect to Y-axis only.


Correct Option: A,B,C
Explanation:

(A) Midpoint of the line segment joining the foci is called the centre of ellipse: TRUE


(B) Line segment through the foci is called major axis: TRUE

(C) End point of major axis are called vertices of ellipse: TRUE

(D) Ellipse is symmetric with respect to Y-axis only.: FALSE
(Ellipse is symmetric to both x-axis and y-axis)