Tag: ellipse

Questions Related to ellipse

The maximum number of normals that can be drawn from any point outside of an ellipse, in general, is 

  1. $2$

  2. $3$

  3. $1$

  4. $4$


Correct Option: A

The line $y = mx - \displaystyle \frac{(a^2 - b^2)m }{\sqrt{a^2+ b^2 m^2}}$ is normal to the ellipse $\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ for all values of $m$ belongs to:

  1. $(0, 1)$

  2. $(0, \infty)$

  3. $R$

  4. None of these


Correct Option: C
Explanation:

The equation of the normal to the given ellipse at the point $P(a  \cos  \theta,  b   \sin  \theta)$ is $ax  \sec  \theta - by  \cos ec \theta = a^2 - b^2$.
$\Rightarrow    \displaystyle y = \left ( \frac{a}{b} \tan  \theta \right)  x - \frac{(a^2 - b^2)}{b} \sin \theta$      (i)
Let      $\displaystyle \frac{a}{b} \tan  \theta = m$, so that
$\displaystyle \sin \theta = \frac{bm}{\sqrt{a^2 + b^2 m^2}}$
Hence, the equation of the normal Equation (i) becomes
$ y = mx - \displaystyle \frac{(a^2 - b^2)m}{\sqrt{a^2 + b^2 m^2}}$
$\therefore    m  \in  R,$ as $m  = \dfrac{a}{b} tan  \theta  \in  R.$

If the length of perpendicular drawn from origin to any normal to the ellipse $\cfrac{{x}^{2}}{16}+\cfrac{{y}^{2}}{25}=1$ is $l$, then $l$ cannot be

  1. $4$

  2. $5/2$

  3. $1/2$

  4. $2/3$


Correct Option: A,B,C,D

If the normal at an end of a latus-rectum of an ellipse $\displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ passes through one extremity of the minor axis, the eccentricity of the ellipse is given by:

  1. $e^2=5$

  2. $\displaystyle e^2=\frac{\sqrt{5}+1}{2}$

  3. $\displaystyle e=\frac{\sqrt{5}-1}{2}$

  4. $\displaystyle e^2=\frac{\sqrt{5}-1}{2}$


Correct Option: D
Explanation:

Let $a>b$, then one of latus rectum of the ellipse is $(ae, \cfrac{b^2}{a})$

Thus equation of normal at this point is given by,

$\cfrac{a^2x}{ae}-\cfrac{b^2y}{b^2/a}=a^2e^2$
Given it passes through one of minor axis ,which is $(0,-b)$
$\Rightarrow \cfrac{a^2(0)}{ae}-\cfrac{b^2(-b)}{b^2/a}=a^2e^2$
$\Rightarrow e^2=\cfrac{b}{a}$

Now using $e^2=1-\cfrac{b^2}{a^2}$
we get,  $e^4+e^2-1=0$
$e^2=\cfrac{-1+\sqrt{5}}{2}, \cfrac{-1-\sqrt{5}}{2}$(not possible)

$\therefore e^2=\cfrac{-1+\sqrt{5}}{2}$

If the normal at one end of the latus rectum of an ellipse $\displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ passes through one extremity of the minor axis, then:

  1. $e^4-e^2+1=0$

  2. $e^2-e+1=0$

  3. $e^2+e+1=0$

  4. $e^4+e^2-1=0$


Correct Option: D
Explanation:

Let $a>b$, then one of latus rectum of the ellipse is $(ae, \cfrac{b^2}{a})$
Thus equation of normal at this point is given by,
$\cfrac{a^2x}{ae}-\cfrac{b^2y}{b^2/a}=a^2e^2$
Given it passes through one of minor axis ,which is $(0,-b)$
$\Rightarrow \cfrac{a^2(0)}{ae}+\cfrac{b^2(-b)}{b^2/a}=a^2e^2$
$\Rightarrow e^2=\cfrac{b}{a}$
Now using $e^2=1-\cfrac{b^2}{a^2}$
we get,  $e^4+e^2-1=0$

The normal to the curve x$^2$ = 4y passing (1,2) is 

  1. x + y = 3

  2. x - y = 3

  3. x + y = 1

  4. x - y = 1


Correct Option: A
Explanation:
Given,

$x^2=4y$

$\Rightarrow 2x=4\dfrac{dy}{dx}$

$\therefore \dfrac{dy}{dx}=\dfrac{x}{2}$

$\dfrac{dy}{dx} _{h,k}=\dfrac{h}{2}$

$\dfrac{-1}{\dfrac{dy}{dx} _{h,k}}=-\dfrac{2}{h}$

Equation of normal

$(y-k)=-\dfrac{2}{h}(x-h)$

Given point, $(1,2)$

$(2-k)=-\dfrac{2}{h}(1-h)$

$k=2+\dfrac{2}{h}(1-h)$

$\therefore k=\dfrac{h^2}{4}$

$\Rightarrow \dfrac{h^2}{4}2+\dfrac{2}{h}(1-h)$

upon solving, we get,

$h=2,k=1$

Hence, the equation of normal is 

$(y-1)=\dfrac{-2}{2}(x-2)$

$y-1=-x+2$

$x+y=3$

The line $l x + m y = n$ is a normal to the ellipse $\dfrac { x ^ { 2 } } { a ^ { 2 } } + \dfrac { y ^ { 2 } } { b ^ { 2 } } = 1 ,$ if 

  1. $\dfrac { a ^ { 2 } } { l^ { 2 } } + \dfrac { \left( a ^ { 2 } - b ^ { 2 } \right) ^ { 2 } } { n ^ { 2 } } = \dfrac { b ^ { 2 } } { m ^ { 2 } }$

  2. $\dfrac { a ^ { 2 } } { l ^ { 2 } } + \dfrac { b ^ { 2 } } { m ^ { 2 } } = \dfrac { \left( a ^ { 2 } - b ^ { 2 } \right) ^ { 2 } } { n ^ { 2 } }$

  3. $\dfrac { \left( a ^ { 2 } - b ^ { 2 } \right) ^ { 2 } } { n ^ { 2 } } + \dfrac { b ^ { 2 } } { m ^ { 2 } } = \dfrac { a ^ { 2 } } { l ^ { 2 } }$

  4. none of these


Correct Option: B
Explanation:
Normals of slope m to the ellipse are given by

$y=mx\pm \dfrac{m(a^2-b^2)}{\sqrt{a^2+b^2m^2}}$

so for $y=mx+c$

$c=\pm\dfrac{m(a^2-b^2)}{\sqrt{a^2+b^2m^2}}$

$c^2=\dfrac{m^2(a^2-b^2)^2}{a^2+b^2m^2}$

for $lx+my+n=0$

$y=-\dfrac{1}{m}x-\dfrac{n}{m}$

$c=-n/m$

slope$=-l/m$

$c^2=\dfrac{m^2(a^2-b^2)^2}{a^2+b^2m^2}$

$\dfrac{n^2}{m^2}=\dfrac{\dfrac{l^2}{m^2}\left(a^2-b^2\right)^2}{a^2+b^2\dfrac{l^2}{m^2}}$

$\dfrac{a^2m^2+b^2l^2}{l^2m^2}=\dfrac{(a^2-b^2)^2}{n^2}$

$\dfrac{a^2}{l^2}+\dfrac{b^2}{m^2}=\dfrac{(a^2-b^2)^2}{n^2}$.

The line $5x - 3y = 8\sqrt{2}$ is a normal to the ellipse $\dfrac{x^2}{25} + \dfrac{y^2}{9} = 1$. If $\theta$ be the eccentric angle of the foot of this normal , then '$\theta$' is equal to

  1. $\dfrac{\pi}{6}$

  2. $\dfrac{\pi}{3}$

  3. $\dfrac{\pi}{4}$

  4. $\dfrac{\pi}{2}$


Correct Option: C
Explanation:
From the equation of ellipse given, we have; $a=5,b=3$

Therefore any point on the ellipse $\left( 5cos\theta , 3sin\theta  \right) .$

Normal at this point to the given ellipse is 
$ 5x sec\theta -3y cosec\theta =25-9=16------(1)$

 Also the equation of given normal is $ 5x-3y=8\sqrt { 2 } -----(2)$

 Also the equation of the normal $(1)$ and $(2)$,

$ \Longrightarrow \dfrac { 5sec\theta  }{ 5 } =\dfrac { 3cosec\theta  }{ 3 } =\dfrac { 16 }{ 8\sqrt { 2 }  }$

$ \Longrightarrow sin\theta =cos\theta =\frac { 1 }{ \sqrt { 2 }  }$

$\Longrightarrow \theta =\frac { \Pi  }{ 4 } $

Option (c) is correct.

Let $L$ be an end of the latus rectum of $y^2 = 4x$. The normal at $L$ meets the curve again at $M$. The normal at $M$ meets the curve again at $N$. The area of $\Delta LMN$ is

  1. $\dfrac{1280}{9} sq.$ units

  2. $\dfrac{640}{9} sq.$ units

  3. $\dfrac{320}{9} sq.$ units

  4. $\dfrac{160}{9} sq.$ units


Correct Option: A

The line $2x+y =3$ cuts the ellipse $4x^2+y^2 =5$ at P and Q . If $\theta$ be the angle between the normals  at these point then $tan \theta$ =

  1. $1/2$

  2. $3/4$

  3. $3/5$

  4. $5$


Correct Option: C