Tag: ellipse

Questions Related to ellipse

The eccentric angle of the point where the line, $5x\, -\, 3y\, =\, 8\sqrt{2}$ is a normal to the ellipse $\displaystyle\frac{x^2}{25}\, +\, \frac{y^2}{9}\,=\,1$ is

  1. $\displaystyle\frac{3\pi}{4}$

  2. $\displaystyle\frac{\pi}{4}$

  3. $\displaystyle\frac{\pi}{6}$

  4. $tan^{-1}\,2$


Correct Option: B
Explanation:

The equation of the normal to the ellipse $\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1$ at the point $P(a \cos \theta, b \sin \theta)$ is $ax\sec\theta - bycosec\theta= a^2 - b^2$

Given,ellipse equation as $\dfrac{x^2}{5^2} + \dfrac{y^2}{3^2} = 1$

$\Rightarrow$ Length of major axis, $a=5$ and length of minor axis, $b=3$.

$\therefore$The required equation of normal is $ 5x\sec\theta-3ycosec\theta=5^2-3^2$

$\Rightarrow 5x\sec\theta-3ycosec\theta=16 \dots (1)$

Given normal equation $5x-3y=8\sqrt2$

Multiplying both sides with $\sqrt2$

$\Rightarrow 5\sqrt2 x-3\sqrt2 y=16\dots (2)$

Comparing equation $(1)$ and $(2)$

$\Rightarrow \sec\theta=\sqrt2$

$\Rightarrow \cos\theta=\dfrac{1}{\sqrt2}$

$\Rightarrow \theta =\dfrac{\pi}{4}$

On the ellipse $\displaystyle \frac { { x }^{ 2 } }{ 4 } +\frac { { y }^{ 2 } }{ 9 } =1$, one of the points at which the normals are parallel to the line $2x-y=1$ is

  1. $\displaystyle \left( \frac { 9 }{ \sqrt { 10 }  } ,\frac { 2 }{ \sqrt { 10 }  }  \right) $

  2. $\displaystyle \left( -\frac { 9 }{ \sqrt { 10 }  } ,\frac { 2 }{ \sqrt { 10 }  }  \right) $

  3. $\displaystyle \left( \frac { 2 }{ \sqrt { 10 }  } ,\frac { 9 }{ \sqrt { 10 }  }  \right) $

  4. None of these


Correct Option: C
Explanation:

Given equation of ellipse is $\dfrac {x^2}{4}+\dfrac {y^2}{9}=1$

Let the feet of normal be $P(x,y)$

Normal is parallel to $2x-y=1$

Therefore, slope of normal at $P$ $=2$

and slope of slope of tangent at $P$ $=-\dfrac { 1 }{ 2 } $

Point of contact of tangent in slope from is $\left( \dfrac { \pm { a }^{ 2 }m }{ \sqrt { { a }^{ 2 }{ m }^{ 2 }+{ b }^{ 2 } }  } ,\dfrac { { \mp b }^{ 2 } }{ \sqrt { { a }^{ 2 }{ m }^{ 2 }+{ b }^{ 2 } }  }  \right) $

Here $a=2,b=3$ and $m=-\dfrac{1}{2}$

Therefore, the point of contact are:

$\left( \dfrac { \pm \left( 4\times \dfrac { -1 }{ 2 }  \right)  }{ \sqrt { 4\times \dfrac { 1 }{ 4 } +9 }  } ,\dfrac { \mp 9 }{ \sqrt { 4\times \dfrac { 1 }{ 4 } +9 }  }  \right) \\ \left( \dfrac { \mp 2 }{ \sqrt { 10 }  } ,\dfrac { \mp 9 }{ \sqrt { 10 }  }  \right) $

 So, option C is correct.

The equation of the normal to the ellipse $\displaystyle\frac{x^2}{a^2}\,+\,\frac{y^2}{b^2}\,=\,1$ at the positive end of latus rectum is : 

  1. $x\,+\,ey\,+\,e^2a\,=\,0$

  2. $x\,-\,ey\,-\,e^3a\,=\,0$

  3. $x\,-\,ey\,-\,e^2a\,=\,0$

  4. none of these


Correct Option: B
Explanation:

$Equation\quad of\quad ellipse:\quad \frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1\ Co-ordinates\quad of\quad positive\quad latus\quad rectum\quad is:\quad (ae,\frac { { b }^{ 2 } }{ a } )\ Equation\quad of\quad normal\quad at\quad point(x1,y1)\quad is:\ \frac { { a }^{ 2 }x }{ x1 } -\frac { { b }^{ 2 }y }{ y1 } ={ (ae) }^{ 2 }\ \therefore \quad Equation\quad is:\quad \frac { { a }^{ 2 }x }{ ae } -\frac { { b }^{ 2 }y }{ \frac { { b }^{ 2 } }{ a }  } ={ (ae) }^{ 2 }\ Or,\quad \frac { x }{ e } -\frac { y }{ 1 } ={ ae }^{ 2 }\ Or,\quad x-ey-{ ae }^{ 3 }=0$


Option [B]

Area of the triangle formed by the ${x}$ axis, the tangent and normal at $(3,2)$ to the ellipse $\displaystyle \frac{x^{2}}{18}+\frac{y^{2}}{8}=1$ is 

  1. $5$

  2. $\dfrac{13}{3}$

  3. $\displaystyle \frac{15}{2}$

  4. $\displaystyle \frac{9}{2}$


Correct Option: B
Explanation:

Given equation of ellipse $\displaystyle \frac{x^{2}}{18}+\frac{y^{2}}{8}=1$
$\displaystyle \frac {dy}{dx}=\displaystyle \frac {-4x}{9y}$
Slope of tangent to ellipse at $(3,2)$ is 
$m=\displaystyle \frac{-2}{3}$

Equation of tangent to ellipse is 
$y-2=-\displaystyle \frac{2}{3}(x-3)$
$\Rightarrow 2x+3y=12$
Since , the tangent intersect x-axis i.e. $y=0$
$\Rightarrow x=6$
So, tangent intersects x-axis at $(6,0)$

Equation of normal to ellipse is 
$y-2=\displaystyle \frac{3}{2}(x-3)$
$\Rightarrow 3x-2y=5$
Since , the tangent intersect x-axis i.e. $y=0$
$\Rightarrow x=\displaystyle \frac{5}{3}$
So, normal intersects x-axis at $\left(\displaystyle \frac{5}{3} ,0\right)$

So, area of triangle $=\displaystyle \frac { 1 }{ 2 } \begin{vmatrix} 3 & 2 & 1 \ 6 & 0 & 1 \ \frac { 5 }{ 3 }  & 0 & 1 \end{vmatrix}$
$=\displaystyle \frac{13}{3}$ sq.units

Find the area of the rectangle formed by the perpendiculars from the center of the ellipse $\displaystyle \frac { { x }^{ 2 } }{ { a }^{ 2 } } +\frac { { y }^{ 2 } }{ { b }^{ 2 } } =1$ to the tangent and normal at a point whose eccentric angle is $\displaystyle\frac{\pi}{4}.$ 

  1. $\displaystyle \frac { \left( { a }^{ 2 }-{ b }^{ 2 } \right) ab }{ { a }^{ 2 }+{ b }^{ 2 } } $

  2. $\displaystyle \frac { \left( { a }^{ 2 }+{ b }^{ 2 } \right) ab }{ { a }^{ 2 }-{ b }^{ 2 } } $

  3. $\displaystyle \frac { \left( { a }^{ 2 }-{ b }^{ 2 } \right)  }{ab( { a }^{ 2 }+{ b }^{ 2 } )} $

  4. $\displaystyle \frac { \left( { a }^{ 2 }+{ b }^{ 2 } \right)  }{ab( { a }^{ 2 }-{ b }^{ 2 } )} $


Correct Option: A

Assertion (A): Equation of the normal to the ellipse $\displaystyle \frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ at $P(\displaystyle \frac{\pi}{4})$ is $5x-3y-8\sqrt{2}=0$
Reason (R): Equation of the normal to the ellipse $\displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at $P(x _{1},y _{1})$ is $\displaystyle \frac{a^{2}x}{x _1}-\frac{b^{2}y}{y _1}=a^{2}-b^2$

  1. Both A and R are true but R is not the correct explanation of A

  2. Both A and R are true and R is the correct explanation of A

  3. A is true but R is false

  4. A is false but R is True


Correct Option: B
Explanation:

Reason is correct.
Equation of normal in parametric form: $\dfrac{ax}{\cos \theta}-\dfrac{by}{\sin \theta}=a^2-b^2$
$\Rightarrow 5\sqrt 2 x-3\sqrt 2 y=25-9=16$
Therefore, assertion is correct but reason is not the correct explanation 

The maximum distance of any normal to the ellipse $\displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ from the centre is:

  1. $a+b$

  2. $a-b$

  3. $a^{2}+b^{2}$

  4. $a^{2}-b^{2}$


Correct Option: B
Explanation:
Equation of any normal to the ellipse is:
$ \cfrac { ax }{ \cos { \theta  } } -\cfrac { by }{ \sin { \theta  } } =ae$ 
Distance from the center is: $ d=\cfrac { ae }{ \sqrt { \cfrac { { a }^{ 2 } }{ { (\cos { \theta  }) }^{ 2 } } +\cfrac { { b }^{ 2 } }{ { (\sin { \theta  }) }^{ 2 } }  }  }$        -------(1) 
$a,e,b$ are fixed for a given ellipse. So, to maximize $d$ we need to minimize the denominator
$ \therefore E={ a }^{ 2 }({ \sec { \theta  }) }^{ 2 }+{ b }^{ 2 }{ \left( co\sec { \theta  } \right)  }^{ 2 }$
$ \cfrac { DE }{ D\theta  } =2{ a }^{ 2 }({ \sec { \theta  }) }^{ 3 }\tan \theta -{ 2b }^{ 2 }{ \left( co\sec { \theta  } \right)  }^{ 3 }\cot \theta =0$
$ \Rightarrow 2{ a }^{ 2 }({ \sec { \theta  }) }^{ 3 }\tan \theta ={ 2b }^{ 2 }{ \left( co\sec { \theta  } \right)  }^{ 3 }\cot \theta $ 
$\Rightarrow { (\tan \theta ) }^{ 4 }=\cfrac { { b }^{ 2 } }{ { a }^{ 2 } } $ 
$\Rightarrow \tan \theta =\sqrt { \cfrac { b }{ a } } $ 
$\therefore  \sin \theta =\sqrt { \cfrac { b }{ a+b }  }$ and 
$\cos \theta =\sqrt { \cfrac { a }{ a+b }  } $ 
Putting these values in equation 1 we get:
$ d=\cfrac { ae }{ \sqrt { \cfrac { { a }^{ 2 }(a+b) }{ a } +\cfrac { { b }^{ 2 }(a+b) }{ b }  }  } $ 
$\Rightarrow d=\cfrac { ae }{ { (a+b) } } $ 
$\Rightarrow d=\cfrac { ae(a-b) }{ { (a+b)(a-b) } } $ 
$\Rightarrow d=a-b$

The maximum distance of the normal to the ellipse $\displaystyle \frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{2}}{4}=1$ from its centre is:

  1. $\displaystyle \frac{1}{2}$

  2. $2$

  3. $1$

  4. $4$


Correct Option: C
Explanation:
Ellipse : $\cfrac { { x }^{ 2 } }{ 9 } +\cfrac { { y }^{ 2 } }{ 4 } =1$

Equation of the normal,
$\cfrac { { ax }^{  } }{ \cos  { \theta  }  } -\cfrac { { by }^{  } }{ \sin { \theta  } } ={ a }^{ 2 }-{ b }^{ 2 } \\ \therefore \cfrac { { 3x }^{  } }{ \cos  { \theta  }  } -\cfrac { { 2y }^{  } }{ \sin { \theta  } } =5$

Or, $\ { 3x }^{  }\sin { \theta  }-{ 2y }^{  }\cos  { \theta  } =5\cos  { \theta  } \sin { \theta  }$

Distance from origin d= $\cfrac { \left| 0+0-5\cos  { \theta  } \sin { \theta  } \right|  }{ \sqrt { 9{ \left( \cos  { \theta  }  \right)  }^{ 2 }+{ 4\left( \sin { \theta  } \right)  }^{ 2 } }  } $

Or, d=$\cfrac { 5 }{ \sqrt { 9{ \left( \csc { \theta  }  \right)  }^{ 2 }+{ 4 }{ \left( \sec { \theta  }  \right)  }^{ 2 } }  } $

To maximize d we need to minimize the denominator.
$E=9{ \left( \csc { \theta  }  \right)  }^{ 2 }+{ 4 }{ \left( \sec { \theta  }  \right)  }^{ 2 }\ then,\quad \\\cfrac { dE }{ d\theta  } =-18{ \left( \csc { \theta  }  \right)  }^{ 2 }\cot { \theta  } +8{ \left( \sec { \theta  }  \right)  }^{ 2 }\tan { \theta  } \ For\quad \\Minimizing,\quad \cfrac { dE }{ d\theta  } =0\\ \therefore -18{ \left( \csc { \theta  }  \right)  }^{ 2 }\cot { \theta  } +8{ \left( \sec { \theta  }  \right)  }^{ 2 }\tan { \theta  } =0 \\Or,18{ \left( \csc { \theta  }  \right)  }^{ 2 }\cot { \theta  } =8{ \left( \sec { \theta  }  \right)  }^{ 2 }\tan { \theta  } \\ Or,{ \left( \tan { \theta  }  \right)  }^{ 4 }=\cfrac { 9 }{ 4 } \\ Or,\quad \tan { \theta  } =\sqrt { \cfrac { 3 }{ 2 }  } \\ \therefore \csc { \theta  } =\sqrt { \cfrac { 5 }{ 3 }  } \quad \quad and\quad \quad \sec { \theta  } =\sqrt { \cfrac { 5 }{ 2 }  } $

 On putting the values in d we get,
$d=\cfrac { 5 }{ \sqrt { 15+10 }  } \\ Or,\quad d=1$

lf the tangent drawn at a point $(t^{2},2t)$ on the parabola $y^{2}=4x$ is same as normal drawn at $(\sqrt{5}\cos\alpha, 2\sin\alpha)$ on the ellipse $\displaystyle \frac{x^{2}}{5}+\frac{y^{2}}{4}=1$, then which of following is not true?  

  1. $t=\displaystyle \pm\frac{1}{\sqrt{5}}$

  2. $\alpha=-\tan^{-1}2$

  3. $\alpha=\tan^{-1}2$

  4. $\alpha=\tan^{-1}4$


Correct Option: D

If the line $x\cos { \alpha  } +y\sin { \alpha  } =p$ be normal to the ellipse $\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$, then

  1. ${ p }^{ 2 }\left( { a }^{ 2 }\cos ^{ 2 }{ \alpha } +{ b }^{ 2 }\sin ^{ 2 }{ \alpha } \right) ={ a }^{ 2 }-{ b }^{ 2 }$

  2. ${ p }^{ 2 }\left( { a }^{ 2 }\cos ^{ 2 }{ \alpha } +{ b }^{ 2 }\sin ^{ 2 }{ \alpha } \right) ={ \left( { a }^{ 2 }-{ b }^{ 2 } \right) }^{ 2 }$

  3. ${ p }^{ 2 }\left( { a }^{ 2 }\sec ^{ 2 }{ \alpha } +{ b }^{ 2 }\csc ^{ 2 }{ \alpha } \right) ={ a }^{ 2 }-{ b }^{ 2 }$

  4. ${ p }^{ 2 }\left( { a }^{ 2 }\sec ^{ 2 }{ \alpha } +{ b }^{ 2 }\csc ^{ 2 }{ \alpha } \right) ={ \left( { a }^{ 2 }-{ b }^{ 2 } \right) }^{ 2 }$


Correct Option: D
Explanation:

The equation of any normal to $\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$ is 
       $ax\sec { \phi  } -by\csc { \phi  } ={ a }^{ 2 }-{ b }^{ 2 }$              ......(i)
The straight line $x\cos { \alpha  } +y\sin { \alpha  } =p$ will be a normal to the ellipse $\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$, if equation (i) and $x\cos { \alpha  } +y\sin { \alpha  } =p$ represent the same line.
$\therefore \dfrac { a\sec { \phi  }  }{ \cos { \alpha  }  } =\dfrac { -b\csc { \phi  }  }{ \sin { \alpha  }  } =\dfrac { { a }^{ 2 }-{ b }^{ 2 } }{ p } $
$\Rightarrow \cos { \phi  } =\dfrac { ap }{ \left( { a }^{ 2 }-{ b }^{ 2 } \right) \cos { \alpha  }  } $
$\sin { \phi  } =\dfrac { -bp }{ \left( { a }^{ 2 }-{ b }^{ 2 } \right) \sin { \alpha  }  } $
$\because \sin ^{ 2 }{ \phi  } +\cos ^{ 2 }{ \phi  } =1$
$\Rightarrow \dfrac { { b }^{ 2 }{ p }^{ 2 } }{ { \left( { a }^{ 2 }-{ b }^{ 2 } \right)  }^{ 2 }\sin ^{ 2 }{ \alpha  }  } +\dfrac { { a }^{ 2 }{ p }^{ 2 } }{ { \left( { a }^{ 2 }-{ b }^{ 2 } \right)  }^{ 2 }\cos ^{ 2 }{ \alpha  }  } =1$
$\Rightarrow { p }^{ 2 }\left( { b }^{ 2 }\csc ^{ 2 }{ \alpha  } +{ a }^{ 2 }\sec ^{ 2 }{ \alpha  }  \right) ={ \left( { a }^{ 2 }-{ b }^{ 2 } \right)  }^{ 2 }$