Tag: ellipse

Questions Related to ellipse

The point at shortest distance from the line x+y=7 and lying on an ellipse $x^2 + 2y^2 =6$, has coordinates

  1. ($\sqrt{2}, \sqrt{2}$)

  2. ($0, \sqrt{3}$)

  3. ($\sqrt{5}, \dfrac{1}{\sqrt{2}}$)

  4. (2, 1)


Correct Option: A

Which of the following points is an exterior point of the ellipse $\displaystyle 16 x^{2} + 9y^{2} - 16x - 32 = 0$.

  1. $\displaystyle \left ( \frac{1}{2}, : 2 \right )$

  2. $\displaystyle \left ( \frac{1}{4}, : 2 \right )$

  3. $\displaystyle \left ( 3, : 2 \right )$

  4. none of these


Correct Option: B,C
Explanation:

Let   $S = \displaystyle 16 x^{2} + 9y^{2} - 16x - 32 $
Now $S(\dfrac12,2)=4+36-8-32 = 0 \Rightarrow $ point on the ellipse.
$S(\dfrac14,2) = 1+36-4-32> 0 \Rightarrow $ point is exterior to the ellipse.
$S(3,2) = 144+36-48-32>0 \Rightarrow $ point is exterior to the ellipse.

An ellipse with foci $(0,\pm 2)$ has length of minor axis as $4$ units. Then the ellipse will pass through the point

  1. $\left( 2,\sqrt { 2 } \right) $

  2. $\left( \sqrt { 2 } ,2 \right) $

  3. $\left( 2,2\sqrt { 2 } \right) $

  4. $\left( 2\sqrt { 2 } ,2 \right) $


Correct Option: B
Explanation:

Let $\cfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\cfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1(a<b)\quad $ is the equation of ellipse, foci $(0,\pm 2)$
(be $=2$)
Given: $2a=4\Rightarrow a=2$
${ e }^{ 2 }=1-\cfrac { { a }^{ 2 } }{ { b }^{ 2 } } \Rightarrow { b }^{ 2 }{ e }^{ 2 }={ b }^{ 2 }-{ a }^{ 2 }\quad $
$\quad 4={ b }^{ 2 }-4\Rightarrow { b }^{ 2 }=8$
$\therefore$ equation of ellipse is $\cfrac { { x }^{ 2 } }{ 4 } +\cfrac { { y }^{ 2 } }{ 8 } =1\quad $
It passes through $\left( \sqrt { 2 } ,2 \right) $

$C: x^{2}+y^{2}=9$, $\displaystyle E: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$, $L: y=2x$

Let $L$ intersect $x=1$ at point $R$. Then which of the following is correct :
  1. $R$ lies inside both $C$ and $E$

  2. $R$ lies outside both $C$ and $E$

  3. $R$ lies on both $C$ and $E$

  4. $R$ lies inside $C$ but outside $E$


Correct Option: D
Explanation:

$y=2x$, intersects $x=1$ at $(1,2)$
Coordinate of $R$ are $(1,2)$
$C(1,2)=1+22-9<0$ Since $C(1,2)$ is $<0, R $ lies inside $C$
$E(1,2)=\dfrac{1}9+1-1>0$ Since $E(1,2)$ is $>0, R $ lies outside $E$.

Let a curve satisfying the differential equation $y^2dx+\left(x-\dfrac{1}{y}\right)dy=0$ which passes through $(1, 1)$. If the curve also passes through $(k, 2)$, then value of k is?

  1. $\dfrac{1}{2}-\dfrac{1}{\sqrt{e}}$

  2. $\dfrac{3}{2}+\dfrac{1}{\sqrt{e}}$

  3. $\dfrac{3}{2}-\dfrac{1}{\sqrt{e}}$

  4. $\dfrac{1}{2}+\dfrac{1}{\sqrt{e}}$


Correct Option: C
Explanation:

$y^2dx+\left(x-\dfrac{1}{y}\right)dy=0$
$\Rightarrow \dfrac{dx}{dy}+\dfrac{x}{y^2}=\dfrac{1}{y^3}$
Integrating factor (I.F.)$=e^{-\dfrac{1}{y}}$
Now $x.e^{-\dfrac{1}{y}}=\displaystyle\int e^{-\dfrac{1}{y}}\dfrac{1}{y^3}dy$
Put $-\dfrac{1}{y}=y$
$x.e^t=\displaystyle\int e^t(-t)dt$
$\Rightarrow x.e^t=-(t.e^t-e^t)+c$
$\Rightarrow e^{-\dfrac{1}{y}}=e^{-\dfrac{1}{y}}\left(1+\dfrac{1}{y}\right)+c$
$\Rightarrow x=1+\dfrac{1}{y}+c.e^{\dfrac{1}{y}}$
it passes through point $(1, 1)$
$\therefore c=-\dfrac{1}{e}$
Equation of curve is
$x=1+\dfrac{1}{y}-e^{\dfrac{1}{y}-1}$
It passes through $(k, 2)$
$\therefore k=1+\dfrac{1}{2}-e^{-\dfrac{1}{2}}=\dfrac{3}{2}-\dfrac{1}{\sqrt{e}}$.

Let $E$ be the ellipse $\displaystyle \frac { { x }^{ 2 } }{ 16 } +\frac { { y }^{ 2 } }{ 4 } =1$ and $C$ be the circle ${ x }^{ 2 }+{ y }^{ 2 }=9$. Let $P$ and $Q$ be the points $(1,2)$ and $(2,1)$ respectively. Then

  1. $Q$ lies inside $C$ but outside $E$

  2. $Q$ lies outside both $C$ and $E$

  3. $P$ lies inside both $C$ and $E$

  4. $P$ lies inside $C$ but outside $E$


Correct Option: D
Explanation:

Since $\displaystyle \frac { { 1 }^{ 2 } }{ 9 } +\frac { { 2 }^{ 2 } }{ 4 } -=\frac{1}{9}>0$

$\therefore P(1,2)$ lies outside $E$
Since $\displaystyle \frac { { 2 }^{ 2 } }{ 9 } +\frac { { 1 }^{ 2 } }{ 4 } -1<0$
$\therefore Q(2,1)$ lies inside $E$
Since ${ 1 }^{ 2 }+{ 2 }^{ 2 }-9<0$
$\therefore P(1,2)$ lies inside $C$
Since ${ 2 }^{ 2 }+{ 1 }^{ 2 }-9<0$
$\therefore Q(2,1)$ also lies inside $C$
$\therefore P$ lies inside $C$ but outside $E$.

Find the equation of the ellipse whose eccentricity is $\dfrac{4}{5}$ and axes are along the coordinate axes and foci at $(0, \pm 4)$.

  1. $\dfrac{x^2}{9}+\dfrac{y^2}{25}=1$

  2. $\dfrac{x^2}{4}+\dfrac{y^2}{16}=1$

  3. $\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$

  4. $\dfrac{x^2}{9}+\dfrac{y^2}{36}=1$


Correct Option: A
Explanation:

Let the required equation of the ellipse be $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$.


According to the problem, the coordinates of the foci are $(0, \pm 4)$.

We know, coordinates of foci are $(0, \pm be)$.

Therefore, $be =4$

$b\left (\dfrac{4}{5}\right )=4$

$b=5$

$b^2=25$

Now, $a^2=b^2(1-e^2)$

$a^2=5^2\left (1-\dfrac{16}{25}\right )$

$a^2=9$

Thus, the required equation of ellipse is $\dfrac{x^2}{9}+\dfrac{y^2}{25}=1$.

The point $(4, -3)$ with respect to the ellipse $4x^2+5y^2=1$.

  1. lies on the curve

  2. lies inside the curve

  3. lies outside the curve

  4. lies focus of the curve


Correct Option: C
Explanation:

$Equation\quad of\quad ellipse:\quad 4{ x }^{ 2 }+5{ y }^{ 2 }=1\ Putting\quad the\quad point\quad (4,-3)\quad on\quad the\quad ellipse\quad we\quad get:\ \quad =4{ (4) }^{ 2 }+5{ (-3) }^{ 2 }-1\ =\quad 64+45-1=28>0\ \therefore \quad The\quad point\quad lies\quad outside\quad the\quad ellipse.$


Option [C]

Consider the ellipse with the equation $x^{2}+3y^{2}-2x-6y-2=0.$ The eccentric angle of a point on the ellipse at a distance 2 units from the contra of the ellipse is

  1. $\dfrac{\pi }{4}$

  2. $\dfrac{\pi }{2}$

  3. $\dfrac{\pi }{6}$

  4. $\dfrac{\pi }{3}$


Correct Option: A
Explanation:

We have,  $x^{2}+3y^{2}-2x-6y-2=0.$

$\Rightarrow$ $x^{2}-2x+1-1+3y^{2}-6y+3-3-2=0.$

$\Rightarrow$ $(x-1)^{2}+3(y-1)^{2}=6$

$\Rightarrow$ $(x-1)^{2}+3(y-1)^{2}=6$ which becomes $x^{2}+3y^{2}=6$ on shifting the origin to $(1, 1)$. Any point with eccentric angle $\theta $ is $(\sqrt{6}cos\theta ,\sqrt{2}sin\theta )$ 

$\Rightarrow$ $4=6cos^{2}\theta +2sin^{2}\theta \Rightarrow 4cos^{2}\theta =2\Rightarrow cos\theta =\pm \dfrac{1}{\sqrt{2}}$

$\Rightarrow$ Hence $\theta =\dfrac{\pi }{4}$ 

Find the set of value(s) of $\alpha$ for which the point $\left ( 7\,-\, \displaystyle \frac{5}{4}\alpha,\,\alpha \right )$ lies inside the ellipse $\displaystyle \frac{x^2}{25}\,+\,\frac{y^2}{16}\,=\, 1.$

  1. $ \displaystyle\left( \frac{17}{5} \dfrac{12}{5}\right) $

  2. $ \left(\dfrac{12}{5},\dfrac{16}{5}\right) $

  3. $ \dfrac{-16}{5} $

  4. None of these


Correct Option: B
Explanation:

$\displaystyle \frac{x^2}{25}\,+\,\frac{y^2}{16}\,=\, 1$


Since point $(7\,-\, \displaystyle \frac{5}{4}\alpha,\,\alpha)$ lies inside the ellipse

$\therefore S _1\,<\,0$

$\Rightarrow 16 (7\,-\, \displaystyle \frac{5}{4}\alpha)^2\,+\, 25.\alpha^2\,<\,400$

$\Rightarrow\,(28\, -\,5\alpha)^2\,+\, 25\alpha^2\,<\, 400$

$\Rightarrow\, 50\alpha^2\, -\, 280\,\alpha\,+\, 384\, < \,0$

$\Rightarrow\, 25\alpha^2\, -\, 140\,\alpha\,+\, 192\, < \,0$

$\Rightarrow (5\alpha-12)(5\alpha-16)<0$

$\Rightarrow \, \alpha \, \in \, \left( \dfrac { 12 }{ 5 } ,\, \dfrac { 16 }{ 5 }  \right) $