Tag: the nth roots of unity
Questions Related to the nth roots of unity
If $1,\alpha, \alpha^2,.....,\alpha^{n - 1}$ be the $n^{th}$ roots of unity, then $(1-\alpha)(1-\alpha^2).....(1-\alpha^{n-1}) $
Find the number of values of complex numbers $\omega$ satisfying the system of equations ${ z }^{ 3 }=-{ \left( \overline { \omega } \right) }^{ 7 }$ and ${ z }^{ 5 }.{ \omega }^{ 11 }=1$
For positive integers ${ n } _{ 1 },{ n } _{ 2 }$ the value of the expression; ${ (1+i) }^{ { n } _{ 1 } }+{ (1+i) }^{ { n } _{ 1 } }+{ (1+i) }^{ { n } _{ 2 } }+{ (1+i) }^{ { n } _{ 2 } }$, where $i=\sqrt { -1 } $, is a real number if :
The value of $\sum _{ n=1 }^{ 10 }{ \left( sin\frac { 2n\pi }{ 11 } -icos\frac { 2n\pi }{ 11 } \right) } $
The value of the expression $1+(2-\omega )+(2-{ \omega }^{ 2 })+2+(3-\omega )+(3-{ \omega }^{ 2 })+..........+(n-1)(n-\omega )(n-{ \omega }^{ 2 })$ where $\omega $ is an imaginary cube root of unity is-
If 1,${ a } _{ 1 }{ a } _{ 2,........, }{ a } _{ n-1 }$ are the ${ n }^{ th }$ roots of unity, then $\left( 1-{ a } _{ 1 } \right) \left( 1-{ a } _{ 2 } \right) ....\left( 1-{ a } _{ n-1 } \right) $ is equal to
Let the four roots of unity be $z _1, z _2, z _3$, and $z _4$, respectively.
Statement 1: $z _1^2+z _2^2+z _3^2+z _4^2=0$
Statement 2: $z _1+z _2+z _3+z _4=0$.
If $\alpha _1, \alpha _2, \alpha _3, \alpha _4$ be the roots of $x^5 - 1 = 0$ then find $\displaystyle \frac{\omega - \alpha _1}{\omega^2 - \alpha _1} \cdot \frac{\omega - \alpha _2}{\omega^2 - \alpha _2} \cdot \frac{\omega - \alpha _3}{\omega^2 - \alpha _3} \cdot \frac{\omega - \alpha _4}{\omega^2 - \alpha _4} $
If $\alpha$ is the n$^{th}$ root of unity, then $1+2\alpha+3\alpha^2+.... $ to $n$ terms equal to
If $\displaystyle\ \alpha$ is nonreal and $\displaystyle\ \alpha=\sqrt[5]{1}$ then the value of $\displaystyle\ 2^{|1+\alpha+\alpha^{2}+\alpha^{3} +\alpha^{-1}|}$ is equal to