Tag: matrices
Questions Related to matrices
Let three matrices $A=\begin{bmatrix} 2 & 1\ 4 & 1\end{bmatrix}; B\begin{bmatrix} 3 & 4\ 2 & 3\end{bmatrix}$ and $C=\begin{bmatrix} 3 & -4\ -2 & 3\end{bmatrix}$ then $t _r(A)+t _r\left(\dfrac{ABC}{2}\right)+t _r\left(\dfrac{A(BC)^2}{4}\right)+t _r\left(\dfrac{A(BC)^3}{8}\right)+.....+\infty =?$
If $A=\begin{bmatrix} 2 & 1 \ 4 & 1 \end{bmatrix}$, $B=\begin{bmatrix} 3 & 4 \ 2 & 3 \end{bmatrix}$ and $C=\begin{bmatrix} 3 & -4 \ -2 & 3 \end{bmatrix}$, then $\displaystyle tr(A)+tr\left(\frac{ABC}{2} \right)+tr\left(\frac{A{(BC)}^{2}}{4} \right)+tr\left(\frac{A{(BC)}^{2}}{8} \right)+...+\infty= $
&1 &4 \end{bmatrix}$If $\displaystyle \lambda =4$,then $\displaystyle \frac {1}{6}\left \{tr(AB)+tr(BA) \right \} $ is equal to
The trace of the matrix $A = \begin{bmatrix}1 & -5 & 7\ 0 & 7 & 9\ 11 & 8 & 9\end{bmatrix}$ is
If $A = [a _{ij}]$ is a scalar matrix of order $n\times n$ such that $a _{ii} = k$ for all $i$, then trace of $A$ is equal to
If $A$ is a $3\times 3$ skew-symmetric matrix, then trace of $A$ is equal to
If $A$ is $2\times 2$ matrix such that $A^2 = 0$, then $tr :(A)$ is
If $A =\begin{bmatrix} 1&9 & -7\ i & \omega^n & 8\ 1 & 6 &\omega^{2n} \end{bmatrix}$ where $i= \sqrt{-1} $ and $\omega$ is complex cube root of unity, then tr(A) will be