Tag: matrices
Questions Related to matrices
For $\alpha, \beta, \gamma \in R$, let $A=\begin{bmatrix} { \alpha }^{ 2 } & 6 & 8 \ 3 & { \beta }^{ 2 } & 9 \ 4 & 5 & { \gamma }^{ 2 } \end{bmatrix}$ and $B=\begin{bmatrix} 2\alpha & 3 & 5 \ 2 & 2\beta & 6 \ 1 & 4 & 2\gamma -3 \end{bmatrix}$. If ${ T } _{ r }(A)={ T } _{ r }(B)$ then the value of $\left( \cfrac { 1 }{ \alpha } +\cfrac { 1 }{ \beta } +\cfrac { 1 }{ \gamma } \right) $ is-
i. Trace of the matrix is called sum of the elements in a principle diagonal of the square matrix.
ii. The trace of the matrix $\begin{bmatrix}
8 & 7 &5\
5 &8 & 2\
7 & 2 & 8
\end{bmatrix}$ is 24 Which of the following statement is correct.
If $A=\begin{bmatrix}
1 &4 &7 \
2 &6 &5 \
3 &-1 &2
\end{bmatrix}$ and B $=$ diag (1 2 5), then
trace of matrix $AB^{2}$ is
Let three matrices $A=\begin{bmatrix} 2 & 1 \ 4 & 1 \end{bmatrix}$; $B=\begin{bmatrix} 3 & 4 \ 2 & 3 \end{bmatrix}$ and $C=\begin{bmatrix} 3 & -4 \ -2 & 3 \end{bmatrix}$ then find
${ tr }\left( A \right) +{ tr }\left( \dfrac { ABC }{ 2 } \right) { tr }\left( \dfrac { A{ \left( BC \right) }^{ 2 } }{ 4 } \right) +{ tr }\left( \dfrac { A{ \left( BC \right) }^{ 3 } }{ 8 } \right) +....+\infty $, where $tr(A)$ represents trace of matrix $A$.
Elements of a matrix $A$ of order $10\times10$ are defined as ${ a } _{ ij }={ w }^{ i+j }$(where $w$ is cube root of unity), then trace ($A$) of the matrix is
Let $A=\left[\begin{matrix}2&0&7\0&1&0\1&-2&1\end{matrix}\right]$ and $B=\left[\begin{matrix}-x&14x&7x\0&1&0\x&-4x&-2x\end{matrix}\right]$ are two matrices such that $AB = (AB)^{-1}$ and $AB\ne I$ (where $I$ is an identity matrix of order $3\times3$).
Find the value of $Tr.\left(AB+(AB)^2+(AB)^3+...+(AB)^{100}\right)$ where $Tr.(A)$ denotes the trace of matrix $A$.
Let $A=\left[\begin{matrix}1 & \displaystyle\frac{3}{2}\1 & 2\end{matrix}\right], B = \left[\begin{matrix}4 & -3\-2 & 2\end{matrix}\right] \mbox{ and } C _r = \left[\begin{matrix}r.3^r & 2^r\0 & (r-1)3^r\end{matrix}\right]$ be 3 given matrices. Compute the value of $\sum _{r=1}^{50}{tr.\left((AB)^r C _r\right)}.($ where $tr.(A)$ denotes trace of matrix A $)$
Let $A=\left[\begin{matrix}3x^2\1\6x\end{matrix}\right], B=[a,b,c]$ and $C=\left[\begin{matrix}(x+2)^2&5x^2&2x\5x^2&2x&(x+2)^2\2x&(x+2)^2&5x^2\end{matrix}\right]$ be three given matrices, where $a,b,c$ and $x\in R$, Given that $tr.(AB) = tr.(C) \vee x\in R$, where $tr.(A)$ denotes trace of $A$. Find the value of $(a+b+c)$
If $f(x,y) = x^2 + y^2 - 2xy, \space (x,y \in R)$ and
$\quad A = \begin{bmatrix}f(x _1,y _1) & f(x _1,y _2) & f(x _1,y _3) \ f(x _2,y _1) & f(x _2,y _2) & f(x _2,y _3) \ f(x _3,y _1) & f(x _3,y _2) & f(x _3,y _3) \end{bmatrix}$
such that trace $(A) = 0$, then which of the following is true (only one option)
Let three matrices A = $\begin{bmatrix} 2& 1\ 4 & 1\end{bmatrix}; B=\begin{bmatrix} 3&4 \ 2 &3 \end{bmatrix} \,\, and \,\, C = \begin{bmatrix}3 &-4 \ -2& 3\end{bmatrix}$ then
$t _r(A)+t _r\left ( \frac{ABC}{2} \right )+t _r\left ( \frac{A(BC)^2}{4} \right )+t _r\left ( \frac{A(BC)^3}{8} \right )+....+\infty $