Tag: total internal reflection

Questions Related to total internal reflection

A ray of light from a denser medium strikes a rarer medium at an angle of incidence $i$. The reflected and refracted rays make an angle of $\pi/2$ with each other. If the angles of reflection and refraction are $r$ and $r'$, then the critical angle will be

  1. $\tan^{-1}(\sin i)$

  2. $\sin^{-1}(\sin r)$

  3. $\sin^{-1}(\tan i)$

  4. $\sin^{-1}(\tan r)$


Correct Option: C
Explanation:
as the reflected and refracted rays are 90 then the angle of refraction is $90-i$

according to Snell's law
$sini\mu _{r}=sin(90-i)$

$\mu _{r}=coti$

critical angle is $sin^{-1}\dfrac{1}{\mu _{r}}=sin^{-1}\dfrac{1}{coti}=sin^{-1}tani$
option $C$ is correct 

A fish looks upward at an unobstructed overcast sky. What total angle does the sky appear to subtend? (Take refractive index of water is $\sqrt 2)$

  1. $180^o$

  2. $90^o$

  3. $75^o$

  4. $60^o$


Correct Option: B
Explanation:
as the refractive index is $\sqrt{2}$ the critical angle is $sin^{-1}\dfrac{1}{\mu _{c}}=sin^{-1}\dfrac{1}{\sqrt{2}}=45^{\circ}$

 total angle the sky appear to subtend is $2\times 45 =90^{\circ}$

option $B$ is correct 

A ray of light traveling in a transparent medium falls on a surface separating the medium from air at an angle of incidence of $45^o$. The ray undergoes total internal reflection. If n is the refractive index of the medium with respect to air, select the possible value(s) of n from the following

  1. 1.3

  2. 1.4

  3. 1.5

  4. 1.6


Correct Option: C,D
Explanation:

$\mu _{min}=\dfrac{1}{sin45}=\sqrt{2}=1.414$


possible values of $\mu$ are $1.5$ and $1.6$ 

option $C,D$ are correct 

The critical angle for glass-air is $45^o$ for the light of yellow colour. State whether it will be less than, equal to, or more than $45^o$ for  blue light?

  1. more than $45^o$

  2. less than $45^o$

  3. same as $45^o$

  4. cant say


Correct Option: B
Explanation:

According to Snell's Law: $\dfrac{sin i _c}{sin r}=\dfrac{n _2}{n _1}$ and for critical angle of incidence $r=90^o$ and $n _2=1$


Blue light has higher refractive index than yellow light hence it's critical angle will be lower than yellow light.

The critical angle for glass-air is $45^o$ for the light of yellow colour. State whether it will be less than , equal to, or more than $45^o$ for  red light?

  1. more than $45^o$

  2. less than $45^o$

  3. same as $45^o$

  4. can't say


Correct Option: A
Explanation:

According to Snell's Law: $\dfrac{sin i _c}{sin r}=\dfrac{n _2}{n _1}$ and for critical angle of incidence $r=90^o$ and $n _2=1$


Red light has lower refractive index than yellow light hence it's critical angle will be higher than yellow light.

State the approximate value of the critical angle for (a) glass-air surface, (b) water-air surface (Given $\mu _{glass} =1.5, \mu _{water}=1.33$)

  1. (a) $49^o$, (b)$49^o$

  2. (a) $42^o$, (b)$42^o$

  3. (a) $42^o$, (b)$49^o$

  4. (a) $49^o$, (b)$42^o$


Correct Option: C
Explanation:

Critical angle is the angle of incidence from denser to rarer medium for which the angle of refraction is $%%90^o$
These angles for glass-air interface is $42^o$ and water-air interface is $49^o$

The critical angle for light going from medium X into medium Y is $\theta$. The speed of light in medium X is v, then speed of light in medium Y is

  1. $v(1 - cos \theta)$

  2. $v/sin \theta$

  3. $v/ cos \theta$

  4. $v cos \theta$


Correct Option: B
Explanation:
critical angle condition:

${ \mu  } _{ X }\sin { \theta  } ={ \mu  } _{ Y }$

Given, speed of light in medium X is v

To find: speed of light in medium Y

$\dfrac { { \mu  } _{ Y } }{ { \mu  } _{ X } } =\sin { \theta  }$

Also, speed of light in medium $Y$ is $=\dfrac{v}{\mu _{rel}}=v\dfrac { { \mu  } _{ X } }{ { \mu  } _{ Y } }$

$=\dfrac { v }{ \sin { \theta  }  }$

Light takes $t _1$ sec to travel a distance 'x' in vacuum and the same light takes $'t _2'$ sec to travel 10 cm in a medium. Critical angle for corresponding medium will be

  1. $\displaystyle sin^{-1} \left ( \frac{10 t _2}{t _1 x} \right )$

  2. $\displaystyle sin^{-1} \left ( \frac{t _2 x}{10 t _1 } \right )$

  3. $\displaystyle sin^{-1} \left ( \frac{10 t _1}{t _2 x } \right )$

  4. $\displaystyle sin^{-1} \left ( \frac{t _1 x}{10 t _2 } \right )$


Correct Option: C
Explanation:

$\displaystyle c = \frac{x}{t _1} , v = \frac{10}{t _2}$

$\displaystyle sin  i _c = \frac{1}{\mu} = \frac{v}{c} = \frac{10}{t _2} \times \frac{t _1}{x}$

$\Rightarrow     i _c = sin^{-1} \left ( \dfrac{10  t _1}{t _2 x} \right )$

A ray of light is travelling from glass to air. (Refractive index of glass $=1.5$). The angle of incidence is $50^o$.The deviation of the ray is

  1. $0^o$

  2. 80$^o$

  3. $50^o - sin^{-1} \displaystyle \left [ \frac{sin 50^o}{1.5} \right ]$

  4. $sin^{-1} \displaystyle \left [ \frac{sin 50^o}{1.5} \right ] - 50^o$


Correct Option: B
Explanation:

$^a\mu _g = 1.5$


$\therefore 1.5 = cosec  C$ 

Or, $C = 42^0$. 

Critical angle for glass $= 42^0$. Hence a ray of light incident at $50^0$ in glass medium undergoes total internal reflection. $\delta$ denotes the deviation of the ray.

$\delta = 180^o - (50^o + 50^o) $ or $\delta = 80^o$.

A light ray is incident at an angle ${30}^{o}$ on a transparent surface separating two media. If the angle of refraction is ${60}^{o}$ then critical angle is

  1. $\sin ^{ -1 }{ \left( \cfrac { 1 }{ \sqrt { 3 } } \right) } $

  2. $\sin ^{ -1 }{ \left( \sqrt { 3 } \right) } $

  3. $\sin ^{ -1 }{ \left( \cfrac { 2 }{ 3 } \right) } $

  4. ${45}^{o}$


Correct Option: A
Explanation:

Snell's law gives ${\mu} _{1} \sin {{30}^{o}}={\mu} _{2} \sin {{60}^{o}}$ but critical angle



${\theta} _{c}=\sin ^{ -1 }{ \left( \cfrac { { \mu  } _{ 2 } }{ { \mu  } _{ 1 } }  \right)  } =\sin ^{ -1 }{ \left( \cfrac { \sin { { 30 }^{ o } }  }{ \sin { { 60 }^{ o } }  }  \right)  } =\sin ^{ -1 }{ \left( \cfrac { 1 }{ \sqrt { 3 }  }  \right)  } $