Tag: total internal reflection

Questions Related to total internal reflection

Which of the following conditions are necessary for total internal reflection to take place at the boundary of two optical media ?
1. Light is passing from optically denser medium to optically rarer medium. 
2. Light is passing from optically rarer medium to optically denser medium. 
3. Angle of incidence is greater than the critical angle. 
4. Angle of incidence is less than the critical angle. 

  1. 1 and 3 only

  2. 2 and 4 only

  3. 3 and 4 only

  4. 1 and 4 only


Correct Option: A
Explanation:

Total internal reflection is a strange phenomenon that happens when a propagating wave strikes a medium boundary at an angle larger than a particular critical angle with respect to the normal to the surface. If the refractive index is lower on the other side of the boundary and the incident angle is greater than the critical angle, the wave cannot pass through and is entirely reflected. The critical angle is the angle of incidence above which the total internal reflection occurs.
Hence, the statements present in 1 and 3 are correct.

A ray of light passing through an equilateral triangular prism gets deviated at least by $30^\circ$. Then, the refractive index of the material of the prism must be 

  1. $\leq \sqrt{2}$

  2. $\geq \sqrt{2}$

  3. $\leq \sqrt{3}$

  4. $\geq \sqrt{3}$


Correct Option: B
Explanation:

Answer is B.

The refractive index of a prism is calculated from the formula, $\mu =\dfrac { sin\frac { A+D }{ 2 }  }{ sin\frac { A }{ 2 }  } \mu =\dfrac { sin\frac { A+D }{ 2 }  }{ sin\frac { A }{ 2 }  } $.
In this case, as it is an equilateral prism, the angle of prism is 60 degrees and the angle of minimum deviation is given as 30 degrees.
So, $\mu =\dfrac { sin\frac { 60+30 }{ 2 }  }{ sin\frac { 60 }{ 2 }  } =\dfrac { sin\quad 45 }{ sin\quad 30 } =\ge \sqrt { 2 } $.
Hence, the refractive index of the material of the prism must be $\ge \sqrt { 2 } $.

If the velocity of light in water is $2.25 \times {10}^{10}   cm$ per second and that is glass is $2 \times {10}^{10}   cm$ per second. A slab of this glass is immersed in water, what will be the critical angle of incidence of a ray of light tending to go from glass slab to water ?

  1. $\sin ^{ -1 }{ { 3 }/{ 5 } } $

  2. $\sin ^{ -1 }{ { 8 }/{ 9 } } $

  3. $\sin ^{ -1 }{ { 4 }/{ 5 } } $

  4. $\sin ^{ -1 }{ { 3 }/{ 4 } } $


Correct Option: B
Explanation:
given,
velocity of light in water  $ { v } _{ w }=2.25\times { 10 }^{ 10 }cm/s\\$ 
velocity  of light in glass  ${ v } _{g }=2\times { 10 }^{ 10 }cm/s$
refractive index of glass w.r.t water =${ _{ w }{ \mu  } _{ g } }=\dfrac { velocity\quad of\quad light\quad in\quad water }{ velocity\quad of\quad light\quad in\quad glass\quad  } =\dfrac { 2.25\times { 10 }^{ 10 } }{ 2\times { 10 }^{ 10 } } =\dfrac { 9 }{ 8 } $

refractive index of water w.r.t. glass =${ _{ g }{ \mu  } _{ w } }=\dfrac { 1 }{ { _{ w }{ \mu  } _{ g } } } =\dfrac { 8 }{ 9 } $
let the critical angle be $\angle { i } _{ c }$
then $sin{ i } _{ c }=\dfrac { 1 }{ _{ w }{ \mu  } _{ g } } = _{ g }{ \mu  } _{ w }$
$sin{ i } _{ c }=\dfrac { 8 }{ 9 } \\ \angle { i } _{ c }={ sin }^{ -1 }\left( \dfrac { 8 }{ 9 }  \right) $

Option B is correct.

A plane sound wave travelling with velocity $v$ in a medium $A$ reaches a point on the interface of medium $A$ and medium $B$. If velocity of sound in medium $B$ is $2v$, the angle of incidence for total internal reflection of the wave will be greater than ($\sin{30} = 0.5$ and $\sin{90} = 1$)

  1. $15$

  2. $30$

  3. $45$

  4. $90$


Correct Option: B
Explanation:

Light travel from medium $A$ with velocity $v$ to medium $B$ with velocity $2v$
Velocity is more in medium $B$, hence it is rarer.
Refractive index of medium $A$ with respect to medium $B$
$\mu = _{B}{\mu} _{A} = \dfrac{Velocity  \ in \  medium \  B}{Velocity \  in   \ medium  \ A}$
$ _{B}{\mu} _{A} = {2}/{1}$
Now as       $\sin{C} = \dfrac{1}{\mu} $

$   \therefore   \sin{C} = \dfrac{1}{2} = 0.5$
$\Rightarrow        C = 30$

In vacuum, to travel distance $d$, light takes time $t$ and in medium to travel $5d$, it takes time $T$. The critical angle of the medium is :

  1. $\sin ^{ -1 }{ \left( \dfrac { 5T }{ t } \right) } $

  2. $\sin ^{ -1 }{ \left( \dfrac { 5t }{ 3T } \right) } $

  3. $\sin ^{ -1 }{ \left( \dfrac { 5t }{ T } \right) } $

  4. $\sin ^{ -1 }{ \left( \dfrac { 3t }{ 5T } \right) } $


Correct Option: C
Explanation:

In vacuum, $c = {d}/{t}$


In medium, $v = \dfrac{5d}{T}$

As refractive index, $\mu = \dfrac{c}{v} = \dfrac{{d}/{t}}{{5d}{T}} = \dfrac{T}{5t}$

Also,      $\sin{C} = \dfrac{1}{\mu}     \therefore  C = \sin ^{ -1 }{ \left[ \dfrac { 5t }{ T }  \right]  } $

The index of refraction for diamond is $2.42$. For a diamond in the air (index of refraction $=1.00$), what is the smallest angle that a light ray inside the diamond can make with a normal and completely reflect back inside the diamond (the critical angle)?

  1. $90^{\circ}$

  2. $45^{\circ}$

  3. $68^{\circ}$

  4. $66^{\circ}$

  5. $24^{\circ}$


Correct Option: E
Explanation:

For a light ray incident on the air-diamond surface to completely reflect back of the smallest possible angle is 
$\mu sini _{min}=1$

$\implies i _{min}=sin^{-1}(\dfrac{1}{\mu})$
$=sin^{-1}(\dfrac{1}{2.42})=24^{\circ}$

A ray of light travelling in a transparent medium falls on a surface separating the medium from air at an angle of incidence 45$^{\circ}$. The ray undergoes total internal reflection. The possible value of refractive index of the medium with respect to air is

  1. 1.245

  2. 1.324

  3. 1.414

  4. 1.524


Correct Option: C
Explanation:

$\mu _{medium} \times \sin 45^{\circ} =\mu _{air}$


$\dfrac{\mu _{medium}}{\mu _{air}}=\dfrac{1}{\sin 45^{\circ}}
=\sqrt{2}
=1.414$

The critical angle of a medium B with respect another medium A is 45$^{\circ}$ and the critical angle of a medium C with respect the medium B is 30$^{\circ}$. The critical angle of medium C with respect to A is :

  1. Less than 30$^{\circ}$

  2. Greater than 30$^{\circ}$

  3. 30$^{\circ}$

  4. Cannot be determined


Correct Option: A
Explanation:

$ \mu _{B} sin 45^{\circ}=\mu _{A} $


$ \mu _{C} sin 30^{\circ}=\mu _{B} $

$ \mu _{C} sin 30 sin 45=\mu _{A} $

$ \mu _{C} \dfrac{1}{2\sqrt{2}}=\mu{A} $

$ \therefore critical \ angle = sin ^{-1} \left ( \dfrac{1}{2\sqrt{2}} \right )<30^{\circ} $

 Light takes t$ _{1}$ sec to travel a distance x cm in vacuum and takes t$ _{2}$ sec to travel 10x cm in a medium.  The critical angle corresponding to the media is :                         

  1. $sin^{-1}(10t _{1}/t _{2}$)

  2. $sin^{-1}(t _{2}/10$)

  3. $sin^{-1}(1/t _{1}$)

  4. $sin^{-1}(t _{1}/10t _{2}$)


Correct Option: A
Explanation:

$\vartheta _{vaccum}=\dfrac{d _{vaccum}}{t _{vaccum}}=\dfrac{\chi }{t _{1}}$


$v _{med}=\dfrac{10\chi }{t _{2}}$

$\mu=\dfrac{\chi \times t _{2}}{t _{1}\times 10\chi }=\dfrac{t _{2}}{10t _{1}}$


$\theta _{cric}=sin^{-1}\left ( \dfrac{1}{\mu} \right )=sin^{-1}\left ( \dfrac{10t _{1} }{t _{2}}\right )$

If the critical angle of the medium is 30$^{\circ}$, the velocity of light in that medium is :
(velocity of light in air  $3 \times 10^8 $ m/s)

  1. 6 x 10$^{8}$m/ s

  2. 3 x 10$^{8}$m /s

  3. 1.5 x 10$^{8}$m/ s

  4. 1 x 10$^{8}$m/s


Correct Option: C
Explanation:

As, $\theta _{cric}=sin^{-1}\left ( \dfrac{1}{\mu} \right )$


$ sin \theta _{cric}=\dfrac{1}{\mu} $

$ \mu= \dfrac{1}{sin 30}=2 $

Also as $ \mu= \dfrac{c}{v _m}=\dfrac{3\times 10^{8}}{v _m } $

$ v _m = 1.5 \times 10^{8} m/s. $