Tag: identities of complex numbers
Questions Related to identities of complex numbers
The value of $\displaystyle\sum _{ n=0 }^{ 100 }{ { i }^{ n! } } $ equals ( where $i=\sqrt { -1 } $ ):
If $a ^ { 2 } + b ^ { 2 } = 1$, then $\dfrac { 1 + b + i a } { 1 + b - i a } = ?$
If ${(1+i)}^{2n}+{(1-i)}^{2n}=-{2}^{n+1}$ where, $i=\sqrt{-1}$ for all those $n$, which are
If $z + \frac{1}{z} = 2\cos {6^0}$, then ${z^{1000}} + \frac{1}{{{z^{1000}}}} + 1$ is equal to
The value of $( 1 + i ) ^ { 4 } + ( 1 - i ) ^ { 4 }$ is
For positive integers $n _1, n _2, $ the value of the expression $(1 + i)^{n _1} + (1 + i^3)^{n _1} + (1 + i^5)^{n _2} + (1 + i^7)^{n _2}$, where $i = \sqrt{-1}$ is a
If $\begin{vmatrix}6i & -3i & 1\4 & 3i & -1\20 & 3 & i\end{vmatrix} = x+ iy$, then
Let $\displaystyle \Delta =\left | \begin{matrix}a _{11} & a _{12} & a _{13}\a _{21} &a _{22} &a _{23} \a _{31} &a _{32} &a _{33} \end{matrix} \right |$ and $\displaystyle a _{pq}= i^{p+q}$ where $\displaystyle i= \sqrt{-1}.$ The value of $\displaystyle \Delta $ is
The sequence $S=i+2{ i }^{ 2 }+3{ i }^{ 3 }+.......$ upto 100 times simplifies to where $i=\sqrt { -1 } $.
Find the value of $\dfrac{i^6 + i^7 + i^8 + i^9}{i^2 + i^3}$