Tag: identities of complex numbers
Questions Related to identities of complex numbers
The value of the sum $\displaystyle \sum _{n=1}^{13}(i^n+i^{n+1})$, where $i=\sqrt {-1}$, equals
The value of $5\sqrt {-8}$ is
The value of $2\sqrt {-49}$ is equal to
The value of $\sqrt {-36} $ is
If $(i^{413})(i^x)=1$, then determine the one possible value of x.
Evaluate and write in standard form $(4-2i)(-3+3i)$, where ${i}^{2}=-1$.
If $i^{2} =-1$, then $i^{162}$ is equal to
If $i=\sqrt{-1}$, then select from the following having the greatest value.
Solve:
$\left ( \dfrac{2i}{1 \, + \, i} \right )^2$
Find the least value of $n$ for which $\left (\dfrac {1 + i}{1 - i}\right )^{n} = 1$.