Tag: direction cosines and direction ratios
Questions Related to direction cosines and direction ratios
If the lines $x=1+a,y=-3-\lambda a,z=1+\lambda a$ and $x=\cfrac { b }{ 2 } ,y=1+b,z=2-b$ are coplanar, then $\lambda$ is equal to
If $\vec { a } ,\vec { b } ,\vec { c } $ are three non-zero vectors, no two of which are collinear and the vector $\vec { a } +\vec { b } $ is collinear with $\vec { c }, \vec { b } +\vec { c } $ is collinear with $\vec {a},$ then $\vec { a } +\vec { b } +\vec { c }$ is equal to -
If the points with position vectors $60\hat{i}+3\hat{j}, 40\hat{i}-8\hat{j}$ and $a\hat{i}-52j$ are collinear, then $a=?$
Let $\overrightarrow{b}$ and $\overrightarrow{c}$ be non collinear vectors.If $\overrightarrow{a}$ is a vector such that $\overrightarrow{a}.\left(\overrightarrow{b}+\overrightarrow{c}\right)=4$ and $\overrightarrow{a}\times\left(\overrightarrow{b}\times \overrightarrow{c}\right)=\left({x}^{2}-2x+6\right)\overrightarrow{b}+\sin{y} .\overrightarrow{c}$ then $\left(x,y\right)$ lies on the line
Three points whose position vectors are $x\bar{i}+y\bar{j}+z\bar{k}$, $\bar{i}+2\bar{j}$ and $-\bar{i}-\bar{j}$ are collinear, then relation between $x, y, z$ is?
If the points $(\alpha, - 1), (2, 1)$ and $(4, 5)$ are collinear, then find $\alpha $ by vector method.
If the points $\bar a + \bar b,\bar a - \bar b,\bar a + k\bar b$ are collinear, then
If $A = (1,2,3) , B = (2,10,1), Q$ are collinear points and $Q _{x}=-1$ then $Q _{z}$ is
If points $\hat i + \hat j, \hat i - \hat j$ and $p \hat i + q \hat j + r \hat k$ are collinear, then
If $\bar { a }, \bar { b }, \bar { c }$ are non-coplaner vector , then the vectors $2\bar { a }- 4\bar { b }+ 4\bar { c }, \bar { a }- 2\bar { b }+ 4\bar { c }$ and $-\bar { a }+ 2\bar { b }+ 4\bar { c }$ are parellel.