Tag: direction cosines and direction ratios

Questions Related to direction cosines and direction ratios

The position vectors of three points are $2\vec{a}-\vec{b}+3\vec{c}$, $\vec{a}-2\vec{b}+\lambda \vec{c}$ and $\mu \vec{a}-5\vec{b}$ where $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors, then the points are collinear when

  1. $\displaystyle \lambda =-2, \mu =\dfrac{9}{4}$

  2. $\displaystyle \lambda =-\dfrac{9}{4}, \mu =2$

  3. $\displaystyle \lambda =\dfrac{9}{4}, \mu =-2$

  4. None of these


Correct Option: C
Explanation:

When points $x, y, z$ are collinear, we have $\alpha x + \beta y = (\alpha + \beta)z$
Similarly, $x(2\vec{a} - \vec{b} + 3\vec{c}) + y(\vec{a} - 2\vec{b} + \lambda \vec{c}) = (x + y)(\mu \vec{a} - 5\vec{b})$
$\Rightarrow$ comparing the coefficients of $\vec{a} \rightarrow 2x + y = x\mu + y\mu $
$\vec{b} \rightarrow - x - 2y = - 5x - 5y$
$\vec{c} \rightarrow 3x + \lambda y = 0$
$\Rightarrow 4x = -3y$ and so $\lambda = \dfrac{9}{4}$
Also, $\mu = -2$

$\bar a,\bar b,\bar c$ are three non-zero vectors such that any two of them are non-collinear. If  $\bar a+\bar b$ is collinear with  $\bar c$ and  $\bar b+\bar c$ is collinear with $\bar a$, then what is their sum?

  1. $-1$

  2. $0$

  3. $1$

  4. $2$


Correct Option: B
Explanation:

We have

$\bar a+\bar b =t\bar c$ ----$(1)$
$\bar b+\bar c =s\bar a$ ----$(2)$
From $(1)$ and $(2)$
$\bar a+\bar b=t(s\bar a-\bar b)$
Since no two of them are collinear, comparing coeffficients gives
$st=1$ and $t=-1$
$\Rightarrow s=-1$ and $t=-1$
From $(1)$
$\therefore \bar a+\bar b+\bar c=0$
Hence, option $B$.

The line passes through the points $\left ( 5,1,a \right )$ & $\left ( 3,b,1 \right )$ crosses the $yz$ plane at the point $\displaystyle \left ( 0,\frac{17}{2},-\frac{13}{2} \right )$ ,then

  1. $a= 4, b= 6$

  2. $a= 6, b= 4$

  3. $a= 8, b= 2$

  4. $a= 2, b= 8$


Correct Option: B
Explanation:

Equation of the line through the points $( 5,1,a  ) $ & $( 3,b,1)$ is
$\displaystyle \frac{x-5}{3-5}=\frac{y-1}{b-1}=\frac{z-a}{1-a}=\lambda $
Now it passes through $\displaystyle \left ( 0,\frac{17}{2},\frac{-13}2{} \right )$
$\displaystyle \therefore \frac{0-5}{-2}=\frac{17/2-1}{b-1}=\frac{-13/2-a}{1-a}=\lambda  :$

$ \Rightarrow \lambda =\dfrac{5}{2}$
$\displaystyle \therefore \frac{17/2-1}{b-1}=\frac{5}{2} $
$\Rightarrow b=4$
and $\displaystyle \frac{-13/2-a}{1-a}=\frac{5}{2} $
$\Rightarrow a=6$

If the three points with position vectors $\displaystyle \bar{a}-2\bar{b}+3\bar{c}, \ 2\bar{a}+\lambda \bar{b}-4\bar{c}, \ -7\bar{b}+10\bar{c} $ are collinear, then $\displaystyle \lambda= $

  1. $1$

  2. 2

  3. $3$

  4. none of these


Correct Option: C
Explanation:

The given vectors are collinear, so $l(\bar{a} - 2\bar{b} + 3\bar{c}) + k(2\bar{a} + \lambda\bar{b} - 4\bar{c}) = (l + k)(-7\bar{b} + 10\bar{c})$
Comparing the coefficients of $\bar{a} \rightarrow l + 2k = 0 $
$\bar{b} \rightarrow -2l + \lambda k = -7l -7k$
$\bar{c} \rightarrow 3l - 4k = 10l + 10k$
$\Rightarrow l = -2k$ and so $\lambda = 3$

The vectors $2\hat i + 3\hat j, \ 5\hat i + 6\hat j$ and $8\hat i + \lambda \hat j$ have their initial points at $(1,1)$. The value of $\lambda$ so that the vectors terminate on one straight line is

  1. 9

  2. 6

  3. 3

  4. 0


Correct Option: A

For what value of $m$, the points $(3,5)$, $(m,6)$ and $\begin{pmatrix} \dfrac { 1 }{ 2 },\dfrac {15 }{ 2 } \end{pmatrix}$ are collinear?

  1. $9$

  2. $5$

  3. $3$

  4. $2$


Correct Option: D
Explanation:

As the points are collinear, the slope of the line joining any two points, should be same as the slope of the line joining two other points. 
Slope of the line passing through points $\left( { x } _{ 1 },{ y } _{ 1 } \right) $ and $\left( { x } _{ 2 },{ y } _{ 2 } \right)$ $ $=$ $ $\dfrac { { y } _{ 2 }-{ y } _{ 1 } }{ { x } _{ 2 }-x _{ 1 } } $
So, slope of the line joining $ (3,5) , (m,6) = $ Slope of the line joining $ (3,5) $ and $\left  (\dfrac {1}{2}, \dfrac {15}{2}\right ) $ 

Therefore, $ \dfrac { 6 - 5 }{ m - 3 } = \dfrac { \frac {15}{2} - 5 }{ \frac {1}{2} - 3 } $
$\Rightarrow  \dfrac { 1 }{ m - 3 } = -1 $

$\Rightarrow  m - 3 = -1 $

$\Rightarrow  m = 2 $

If the points $(p,0)$, $(0,q)$ and $(1,1)$ are collinear, then $\dfrac { 1 }{ p }+\dfrac { 1 }{ q }$ is equal to:

  1. $-1$

  2. $1$

  3. $2$

  4. $0$


Correct Option: B
Explanation:

As the points are collinear, the slope of the line joining

any two points, should be same as the slope of the line joining two other

points.

Slope of the line passing through points $\left( { x } _{ 1 },{ y } _{ 1 }

\right) $ and $\left( { x } _{ 2 },{ y } _{ 2 } \right)$ $ = $ $\dfrac { { y

} _{ 2 }-{ y } _{ 1 } }{ { x } _{ 2 }-x _{ 1 } } $

So, slope of the line joining $ (p,0) , (0,q) = $ Slope of the line joining

$ (0,q) $ and $ (1,1) $

$ \dfrac { q - 0 }{ 0 - p } = \dfrac { 1 - q }{ 1 - 0 } $

$ - \dfrac { q }{ p } = 1 - q $

Dividing both sides by $q$,
$ - \dfrac { 1 }{ p } =  \dfrac { 1 }{ q } - 1 $

$ => \dfrac { 1 }{ p } +  \dfrac { 1 }{ q } = 1 $

Determine if the points $(1,5)$ $(2,3)$ and $(-2,-11)$ are collinear.

  1. True

  2. False


Correct Option: B
Explanation:

The given points are $A(1,5)$, $B(2,3)$ and $C(-2,-11)$.


Let us calculate the distance : $AB$, $BC$ and $CA$ by using distance formula.

$AB =\sqrt { (2-1)^{ 2 }+(3-5)^{ 2 } } =\sqrt { (1)^{ 2 }+(-2)^{ 2 } } $

$=\sqrt {1+4} = \sqrt{ 5 }$ units

$BC =\sqrt { (-2-2)^{ 2 }+(-11-3)^{ 2 } }=\sqrt { (-4)^{ 2 }+(-14)^{ 2 } }$

$=\sqrt {16+196} =\sqrt {212} = 2\sqrt{53}$ units

$CA =\sqrt { (-2-1)^{ 2 }+(-11-5)^{ 2 } }$

$=\sqrt { (-3)^{ 2 }+(-16)^{ 2 } } =\sqrt {9+256} = \sqrt {265 }$ 

$=\sqrt {5}\times\sqrt {53}$ units

From the above we see that : $AB+BC\neq CA$

Hence, the above stated points $A(1,5)$, $B(2,3)$ and $C(-2,-11)$ are not collinear.

In each of the following find the value of $k$, for which the points are collinear.
(i) $(7,-2)$, $(5,1)$, $(3,k)$
(ii) $(8,1)$, $(k,-4)$, $(2,-5)$

  1. (i) $k = 4$
  2. (i) $k = 5$

  3. (ii) $k = 3$

  4. (ii) $k = 2$


Correct Option: A,C
Explanation:

Since the given points are collinear, they do not form a triangle, which means area of the triangle is Zero.

Area of a triangle with vertices $({ x } _{ 1 },{ y } _{ 1 })$ ; $({ x } _{ 2 },{ y

} _{ 2 })$  and $({ x } _{ 3 },{ y } _{ 3 })$  is $ \left| \dfrac { {

x } _{ 1 }({ y } _{ 2 }-{ y } _{ 3 })+{ x } _{ 2 }({ y } _{ 3 }-{ y } _{ 1 })+{ x } _{

3 }({ y } _{ 1 }-{ y } _{ 2 }) }{ 2 }  \right| $


1) Substituting the points $({ x } _{ 1 },{ y } _{ 1 }) = (7,-2) $ ; $({ x

} _{ 2 },{ y } _{ 2 }) = (5,1) $  and $({ x } _{ 3 },{ y } _{ 3 }) = (3,k)$

In the area formula, we get

$ \left| \dfrac { 7(1-k) + 5(k+2) + 3(-2-1) }{ 2 }  \right|  =

0 $

$ \left| \dfrac { 7 -7k + 5k + 10 - 9 }{ 2 }  \right|  =

0 $

$ \left| \dfrac { 8 -2k }{ 2 }  \right|  =

0 $

$ \Rightarrow  8 - 2k = 0 $

$ \Rightarrow  k = 4 $

2) Substituting the points $({ x } _{ 1 },{ y } _{ 1 }) = (8,1) $ ; $({ x

} _{ 2 },{ y } _{ 2 }) = (k,-4) $  and $({ x } _{ 3 },{ y } _{ 3 }) = (2,-5)$ in the area formula, we get


$ \left| \dfrac { 8(-4+5) + k(-5-1) + 2(1+4) }{ 2 }  \right|  =

0 $

$ \left| \dfrac { 8 -6k +10 }{ 2 }  \right|  =

0 $

$ \left| \dfrac { 18 -6k }{ 2 }  \right|  =

0 $

$ \Rightarrow  18 - 6k = 0 $

$ \Rightarrow  k = 3 $

Are the points (1, 1), (2, 3) and (8, 11) collinear ?

  1. collinear

  2. Non collinear

  3. coplaner

  4. None of above


Correct Option: B
Explanation:

Area of triangle formed by these vertices is 
$\displaystyle \Delta =\frac { 1 }{ 2 } \begin{vmatrix} 1 & 1 & 1 \ 2 & 3 & 1 \ 8 & 11 & 1 \end{vmatrix}$
Applying ${ R } _{ 2 }\rightarrow { R } _{ 2 }-{ R } _{ 1 },{ R } _{ 3 }\rightarrow { R } _{ 3 }-{ R } _{ 1 }$
$\displaystyle \Delta =\frac { 1 }{ 2 } \begin{vmatrix} 1 & 1 & 1 \ 1 & 2 & 0 \ 7 & 10 & 0 \end{vmatrix}=\frac { 1 }{ 2 } \left( 10-14 \right) =2$
Hence points are non collinear