Tag: patterns in square numbers

Questions Related to patterns in square numbers

Find the missing term in the following problem.
$\left (\dfrac {3x}{4} - \dfrac {4y}{3}\right )^{2} = \dfrac {9x^{2}}{16} + \dfrac {16y^{2}}{9} + ?$.

  1. $2xy$

  2. $-2xy$

  3. $12xy$

  4. $-12xy$


Correct Option: B
Explanation:
We know that $(a-b)^2=a^2+b^2-2ab$
$\left (\dfrac{3x}{4}-\dfrac{4y}{3}\right)^2=\left (\dfrac{3x}{4}\right)^2+\left (\dfrac{4y}{3}\right)^2-2\left(\dfrac{3x}{4}\right)\left (\dfrac{4y}{3}\right)$
$=\dfrac{9x^2}{16}+\dfrac{16y^2}{9}-2xy$
Therefore, the missing term is $-2xy$.

Option (B) is correct

$(9p - 5q)^{2} + 180 pq$ is equivalent to _______.

  1. $(5p + 9q)^{2}$

  2. $(5p - 9q)^{2}$

  3. $(9p + 5q)^{2}$

  4. $(9p - 5q)^{2}$


Correct Option: C
Explanation:
We know that $a^2+b^2+2ab$
$(a-b)^2=a^2+b^2-2ab$
$\Rightarrow (a-b)^2+4ab=a^2+b^2-2ab+4ab=(a+b)^2$    $(\because a=9p$ and $b=5q)$
$\Rightarrow 4ab=4(9p)(5q)=180pq$
Therefore, $ (9p-5q)^2+180pq=(9p+5q)^2$

Option (C) is correct.

If $\sqrt{\left(12+\sqrt{12+\sqrt{12+....}}\right)}=x$, then the value of x is ____________.

  1. $3$

  2. $4$

  3. $6$

  4. Greater than $6$


Correct Option: B
Explanation:

$\sqrt{12+\sqrt{12+\sqrt{12+....}}} = x$.........................(1)

$\sqrt{12+x}=x$
$(12+x)=x^2$
$x^2-x-12=0$
$(x-4)(x+3)=0$
$ x=4$ or $x=-3$
since x is a positive number (eq 1)
$x=4$

$\sqrt { 3+2\sqrt { 2 }  } +\sqrt { 3-2\sqrt { 2 }  } =...$ ?

  1. $2+2\sqrt {2}$

  2. $2\sqrt {2}$

  3. $1$

  4. $0$


Correct Option: B
Explanation:

$\sqrt { 3+2\sqrt { 2 }  } +\sqrt { 3-2\sqrt { 2 }  }$ 


$\Rightarrow$  $\left(\sqrt { 3+2\sqrt { 2 }  } +\sqrt { 3-2\sqrt { 2 }  }\right)^2$          [ Squaring both  sides ]

$\Rightarrow$  $(\sqrt{3+2\sqrt{2}})^2+(\sqrt{3-2\sqrt{2}})^2+2(\sqrt{3+2\sqrt{2}})(\sqrt{3-2\sqrt{2}})$

$\Rightarrow$  $3+2\sqrt{2}+3-2\sqrt{2}+2\sqrt{(3)^2-(2\sqrt{2})^2}$

$\Rightarrow$  $6+2\sqrt{9-8}$

$\Rightarrow$  $8$
Taking square root
$\Rightarrow$  $2\sqrt{2}$

if $y = 500{e^{7x}} + 600{e^{-7x}}$ . Then $\dfrac{{d^2y}}{dx^2} = 49y$

  1. True

  2. False


Correct Option: A
Explanation:

$y=500e^{7x}+600e^{-7x}$


Differentiationg w.r.t. $x$

$\Rightarrow$  $\dfrac{dy}{dx}=500\dfrac{d(e^{7x})}{dx}+600\dfrac{d(e^{-7x})}{dx}$

$\Rightarrow$  $500\times e^{7x}\times \dfrac{d(7x)}{dx}+600\times e^{-7x}\times \dfrac{d(-7x)}{dx}$

$\Rightarrow$  $\dfrac{dy}{dx}=500\times e^{7x}\times 7+600\times e^{-7x}\times (-7)$

$\Rightarrow$  $\dfrac{dy}{dx}=500\times 7\times e^{7x}-600\times 7\times e^{-7x}$

Again differentiating w.r.t. $x$,

$\Rightarrow$  $\dfrac{d^2y}{dx^2}=500\times 7\times \dfrac{d(e^{7x})}{dx}-600\times 7\times \dfrac{d(e^{-7x})}{dx}$

$\Rightarrow$  $\dfrac{d^2y}{dx^2}=500\times 7\times e^{7x}\times 7-600\times 7\times (-7)\times e^{-7x}$

$\Rightarrow$  $\dfrac{d^2y}{dx^2}=500\times 7\times 7e^{7x}+600\times 7\times 7\times e^{-7x}$

$\Rightarrow$  $\dfrac{d^2y}{dx^2}=7\times 7(500e^{7x}+600e^{-7x})$

$\Rightarrow$  $\dfrac{d^2y}{dx^x}=49y$

Evaluate each of the following using identities :
i) $(399)^2$
ii) $(0.98)^2$
iii) $991 \times 1009$

  1. i) 159876

    ii) 0.91
    iii) 876590

  2. i) 135879

    ii) 0.87
    iii) 896750

  3. i) 159201

    ii) 0.9604
    iii) 999919

  4. i) 138760

    ii) 0.9
    iii) 999999


Correct Option: C
Explanation:

$(i)$

$(399)^2=(400-1)^2$
             $=(400)^2+(1)^2-2\times 400\times 1$                [ $(a-b)=a^2+b^2-2ab$ ]
             $=160000+1-800$
             $=159201$
$\therefore$  $(399)^2=159201$

$(ii)$
$(0.98)^2=(1-0.02)^2$
              $=(1)^2+(0.02)^2-2\times 1\times 0.02$                 [ $(a-b)=a^2+b^2-2ab$ ]
              $=1+0.0004-0.04$
              $=0.9604$

$(iii)$ 
$991\times 1009=(1000-9)(1000+9)$
                       $=(1000)^2-(9)^2$                               [ $(a+b)(a-b)=a^2-b^2$ ]     
                       $=1000000-81$ 
                       $=999919$

If $a + b + c = 9$ and $ab + bc + ca = 26$, then the value of $a^2 + b^2 + c^2$ is

  1. $29$

  2. $52$

  3. $81$

  4. None


Correct Option: A
Explanation:

Given, $a + b + c = 9$......(1) and $ab + bc + ca = 26$.......(2).


Now we have,


$\Rightarrow$$a^2+b^2+c^2=(a+b+c)^2-2(ab+bc+ca)$

$\Rightarrow$$a^2+b^2+c^2=(9)^2-2\times26=81-52=29$.

If $x^{2}+2(a-1)x+a+5=0$ has real roots to the interval $(1,3)$, then complete set of value of $'a'$ is

  1. $\left(-\infty,-\dfrac {8}{7}\right)$

  2. $(4,\infty)$

  3. $\left(-\infty,-\dfrac {48}{3}\right)$

  4. $a\ \epsilon \left(-\dfrac {8}{7},-1 \right]$


Correct Option: D
Explanation:

Given $f(x)=x^{2}+2(a-1)x+a+5=0$ has real roots $\implies b^{2}-4{a}{c}\geq 0 $ in $a{x^{2}}+b{x}+c=0$

                     $\implies (a-1)^{2}-(a+5)\geq 0\implies a\in (-\infty,-1]\cup[4,\infty)\cdots\cdots(1)$
 the roots lies in $(1,3)\implies f(1).f(3)> 0\implies (3{a}+4)(7{a}+8)>0$
                              $\implies a\in (-\infty,-\dfrac{4}{3})\cup(-\dfrac{8}{7},\infty)\cdots\cdots(2)$
from $(1),(2)$    $a\in\bigg(-\dfrac{8}{7},-1\bigg]$

Find the square of $83$ without actual multiplication.

  1. $6880$

  2. $3881$

  3. $3889$

  4. $6889$


Correct Option: D
Explanation:

$\ 83^2\(80+3)^2\= 80^2+2\cdot 80\cdot 3+3^2\= 6400+480+9\= 6889$

If $x^{2}+\dfrac{1}{^{x^2}}=18$, then the value of $\left(x+\dfrac{1}{x}\right)$ is ?

  1. $1$

  2. $3$

  3. $\sqrt {20}$

  4. $6$


Correct Option: C
Explanation:

$x^2+\dfrac{1}{x^2}=18$


$\Rightarrow$  $x^2+\dfrac{1}{x^2}=20-2$                           [ Since, $20-2=18$ ]

$\Rightarrow$  $x^2+\dfrac{1}{x^2}+2=20$

$\Rightarrow$  $x^2+\dfrac{1}{x^2}+2\times x\times\dfrac{1}{x}=20$

$\Rightarrow$  $\left(x+\dfrac{1}{x}\right)^2=20$                      [ Since, $a^2+b^2+2ab=(a+b)^2$ ]

$\Rightarrow$  $\left(x+\dfrac{1}{x}\right)=\sqrt{20}$