Tag: patterns in square numbers

Questions Related to patterns in square numbers

Find the square of the following number without multiplication.

46

  1. 2116

  2. 2002

  3. 2424

  4. 1988


Correct Option: A
Explanation:

${46}^{2} = 46\times46 = 2116$

If sin$\theta -cosec  \theta =\sqrt{5},$ then the value of sin  $\theta  + cosec  \theta$ is:

  1. $\sqrt{3}$

  2. 1

  3. 3

  4. 9


Correct Option: C
Explanation:

$\Rightarrow \sin\theta-cosec\theta=\sqrt{5}$


$\Rightarrow \sin\theta-\dfrac{1}{\sin\theta}=\sqrt{5}$      $(\because cosec\theta=\dfrac{1}{\sin\theta})$

$\Rightarrow \sin^2\theta-\sqrt{5}\sin\theta-1=0$

Solving equation to get roots.

$\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}=\dfrac{\pm3+\sqrt{5}}{2}$ (substitute values to get roots)

To find:-

$\sin\theta+cosec\theta$

Using $\dfrac{3+\sqrt{5}}{2}$

$=\dfrac{3+\sqrt{5}}{2}+\dfrac{2}{3+\sqrt{5}}$

$=\dfrac{(3+\sqrt{5})^2+4}{2(3+\sqrt{5})}$

$=\dfrac{9+4+5+6\sqrt{5}}{2(3+\sqrt{5})}$

$=\dfrac{6(3+\sqrt{5})}{2(3+\sqrt{5})}$

$=3$


Using $\dfrac{-3+\sqrt{5}}{2}$

$=\dfrac{-3+\sqrt{5}}{2}+\dfrac{2}{-3+\sqrt{5}}$

$=\dfrac{(-3+\sqrt{5})^2+4}{2(-3+\sqrt{5})}$

$=\dfrac{9+4+5-6\sqrt{5}}{2(-3+\sqrt{5})}$

$=\dfrac{-6(-3+\sqrt{5})}{2(-3+\sqrt{5})}$

$=-3$


According to option answer is $3$

If $a+b+c=6$ and $ ab+bc+ca = 11 $
Find $\left( { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right)$ ?
  1. $14$

  2. $25$

  3. $36$

  4. $47$


Correct Option: A
Explanation:
Given $a+b+c=6$ 

$(a+b+c)^2=36$

$(a^2+b^2+c^2)+2(ab+ba+ca)=36$

$a^2+b^2+c^2+(2\ast 11)=36$

$a^2+b^2+c^2=36-22=14$

Evaluating the following :
$(3+\sqrt{2})^{5}-(3-\sqrt{2})^{5}$

  1. $1718\sqrt 3$

  2. $1718\sqrt 2$

  3. $1178\sqrt 3$

  4. $1178\sqrt 2$


Correct Option: D
Explanation:

Given term is $(3+\sqrt{2})^{5}-(3-\sqrt{2})^{5}$


$\Rightarrow 2\left[\ ^{5}C _{1}\times 3^{4}\times (\sqrt{2})^{1}+\ ^{5}C _{3}\times 3^{2}\times (\sqrt{2})^{3}+\ ^{5}C _{5}\times 3^{0}\times (\sqrt{2})^{5}\right]$

$\Rightarrow 2\left[5\times 81\times\sqrt{2}+10\times 9\times 2\sqrt{2}+4\sqrt{2}\right]$

$\Rightarrow 2\sqrt{2}(405+180+4)$

$\Rightarrow 1178\sqrt{2}$

Evaluating the following :
$(1+2\sqrt{x})^{5}+(1-2\sqrt{x})^{5}$

  1. $2(1+40x^2+80x)$

  2. $2(1-40x+81x^2)$

  3. $2(1+40x+80x^2)$

  4. None of these


Correct Option: C
Explanation:
Given to evaluate is $(1+2\sqrt x)^5 +(1-2\sqrt x)^5$

$\Rightarrow 2[^{5}C _{0} (2\sqrt x)^0 +^5C _2 (2\sqrt x)^2 +^5C _4 (2\sqrt x)^4]$

$\Rightarrow 2[1+10\times 4x+5\times 16x^2]$

$\Rightarrow 2[1+40x+80x^2]$