Tag: finding roots by iteration

Questions Related to finding roots by iteration

x is ........... variable

  1. Dependent

  2. Independent

  3. None

  4. both


Correct Option: B
Explanation:

Value of x does not depend on any other variable. so it is independent variable.

When multiplicity of a polynomial exist?

  1. when a factor appears in conjugate

  2. when a factor appears more than once

  3. when a factor appears more than twice

  4. None of the above


Correct Option: B
Explanation:

"multiplicity of a polynomial exist when a factor of a polynomial repeats more than once"

For eg. In the polynomial $(x -2)^3(x-3)^2(x-1 )$ 
The root $2$ have multiplicity $3$, the root  $3$ have $2$, and the root $1$ have $1$
Hence, B is correct.

Let $R=gS-4$. When $S=8,R= 16$. When $S= 10$, R is

  1. 11

  2. 14

  3. 21

  4. 20


Correct Option: C
Explanation:

$R=gS-4, S=8, R=16$
or $16=g\times 8-4$ or $16+4=g\times 8$
or $g=\frac {20}{8}=\frac {5}{2}$
Therefore, when $S=10$
$R=\frac {5}{2}\times 10-4=21$

A three-digit number beginning from the left is abc. The number is

  1. cba

  2. a+10b+100c

  3. 100a+10b+c

  4. none of these


Correct Option: C
Explanation:

Here, c is the digit in the units' place; b standing in the tens' place represents b tens; similarly, a represents a hundreds.
The number is, therefore, equal to a hundreds + b tens + c units $= 100a + 10b + c$.

Condition for an irreducible quadratic equation is-

  1. discriminant is positive

  2. discriminant is negative

  3. discriminant is zero

  4. None of the above


Correct Option: B
Explanation:

Irreducible quadratic equation can not be reduced more i.e the quadratic equation which do not have real roots   

This means the roots are imaginary
So if roots are imaginary, then discriminant $D  <  0$
Hence, option B is correct.

The factorized form of $x^5 +x^4-x-1$ is

  1. $(x+1)^2(x+1)^2(x-1)$

  2. $(x^2+1)(x^2+1)^2(x-1)$

  3. $(x^2+1)(x+1)^2(x-1)$

  4. $(x^2+1)^2(x-1)$


Correct Option: C
Explanation:

$x^5 +x^4-x-1$
$=x^4(x + 1)-1(x + 1)$
$=(x +1)(x^4-1)$
$= (x + 1) (x^2+ 1) (x^2-1)$
$ = (x + 1) (x^2+ 1) (x + 1) (x -1)$
$ = (x^2+ 1) (x + 1)^2(x -1)$

Solve the simultaneous equations using the convergent iterations:
$5x$ + $y$ + $2z$ = $19$
$2x$ + $3y$ +$8z$ = $39$
$x$ + $4y$ -$2z$ = $-2$

  1. $x=2$, $y=2$ and $\text z =1$

  2. $x=2$, $y=1$ and $\text z =4$

  3. $x=3$, $y=2$ and $\text z =2$

  4. None of these


Correct Option: B
Explanation:

$5x+y+2z=19$

$x+4y-2z=-2$

Adding above two equations we get,
$5x+y+2z+x+4y-2z=19-2$
$\implies 6x+5y=17$

Taking another equation 
$2x+3y+8z=39$

Multiplying the given last equation with $4$
$4x+16y-8z=-8$

Adding above two equations 
$2x+3y+8z+4x+16y-8z=31$
$\implies 6x+19y=31$

Now,
$6x+19y-(6x+5y)=31-17$
$\implies 19y-5y=14$
$\implies y=1$

By substituting the value of $y$ into the above equations 
we get,
$x=2$ and $z=4$
$\therefore\ x=2,y=1$ and $z=4$.

Solve the simultaneous equations using the convergent iterations:
$12x$ + $3y$ - $5z$ = $1$
$x$ + $5y$ +$3z$ = $28$
$3x$ + $7y$ $13z$ = $76$

  1. $x=1$, $y=4$ and $\text z =3$

  2. $x=1$, $y=3$ and $\text z =4$

  3. $x=2$, $y=3$ and $\text z =5$

  4. $x=3$, $y=2$ and $\text z =5$


Correct Option: B

Find the answer to the equation $x^{3}$ - $2x$ = $25$  to one decimal place using trial and improvement method. 

  1. $3.7$

  2. $3.2$

  3. $3.6$

  4. $3.9$


Correct Option: B
Explanation:

$f(x)={ x }^{ 3 }-2x=25$

$1.x=2$
${ x }^{ 3 }-2x=4$ (too small)

$2.\quad x=3\\ { x }^{ 3 }-2x=21$
$3.x=4{ x }^{ 3 }-2x=56$
$4.x<4\quad and\quad x>3$
$x=3.1$  
${ x }^{ 3 }-2x=23.6$ (close)
$ 5.x=3.2$
$ { x }^{ 3 }-2x=26.4$
$ x=3.2$

Use the Zero Product Property to solve the equation $(7x+2) (5x-4)=0$

  1. $\dfrac{2}{7}$ , $ \dfrac{-4}{5}$

  2. $\dfrac{-2}{7}$ , $ \dfrac{4}{5}$

  3. $\dfrac{-2}{5}$ , $ \dfrac{7}{5}$

  4. $\dfrac{2}{5}$ , $ \dfrac{-7}{5}$


Correct Option: B
Explanation:

$(7x+2)(5x-4)=0\ (7x+2)=0\quad ;\quad (5x-4)=0\ x=-\dfrac { 2 }{ 7 } \quad ;\quad x=\dfrac { 4 }{ 5 } $