Given $x=2+\sqrt{3}$ and $xy=1$
$\Rightarrow\,y=\dfrac{1}{x}=\dfrac{1}{2+\sqrt{3}}=\dfrac{2-\sqrt{3}}{4-3}=2-\sqrt{3}$
Let $\sqrt{x}=\sqrt{a}+\sqrt{b}$
then $x=a+b+2\sqrt{ab}$ by squaring both sides
We have $x=2+\sqrt{3}=a+b+2\sqrt{ab}$
$\Rightarrow\,a+b=2,\,\sqrt{ab}=\dfrac{\sqrt{3}}{2}$ or $ab=\dfrac{3}{4}$
$\Rightarrow\,{\left(a-b\right)}^{2}={\left(a+b\right)}^{2}-4ab=4-4\times \dfrac{3}{4}=4-3=1$
$\Rightarrow\,a-b=1$
$\Rightarrow\,a+b=2,\,a-b=1$
$\Rightarrow\,2a=3$
$\Rightarrow\,a=\dfrac{3}{2}$
Put $a=\dfrac{3}{2}$ in $a+b=2$
$b=2-a=2-\dfrac{3}{2}=\dfrac{4-3}{2}=\dfrac{1}{2}$
$\therefore\,a=\dfrac{3}{2},b=\dfrac{1}{2}$
So,$\sqrt{x}=\dfrac{\sqrt{3}+1}{\sqrt{2}}$
$\sqrt{y}=\dfrac{1}{\sqrt{x}}=\dfrac{\sqrt{2}}{\sqrt{3}+1}\\$
$\sqrt{y}=\dfrac{\sqrt{2}}{\sqrt{3}+1}\times\dfrac{\sqrt{3}-1}{\sqrt{3}-1}\\$
$=\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{3-1}=\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{2}\times\dfrac{\sqrt{2}}{\sqrt{2}}\\$
$=\dfrac{2\left(\sqrt{3}-1\right)}{2\sqrt{2}}=\dfrac{\sqrt{3}-1}{\sqrt{2}}\\$
Now substitute in the given expression:
$\dfrac{x}{\sqrt{2}+\sqrt{x}}=\dfrac{\left(2+\sqrt{3}\right)\times\sqrt{2}}{\sqrt{2}\times \sqrt{2}+\sqrt{3}+1}\\$
$=\dfrac{\left(2+\sqrt{3}\right)\times\sqrt{2}}{2+\sqrt{3}+1}=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)}{3+\sqrt{3}}\\$
$=\dfrac{\sqrt{2}\left(2+\sqrt{3}\right)}{3+\sqrt{3}}\times\dfrac{3-\sqrt{3}}{3-\sqrt{3}}=\dfrac{\sqrt{2}\left(3+\sqrt{3}\right)}{6}\\$
$\dfrac{y}{\sqrt{2}-\sqrt{y}}=\dfrac{\left(2+\sqrt{3}\right)\times\sqrt{2}}{\sqrt{2}\times \sqrt{2}-\sqrt{3}+1}\\$
$=\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{2-\sqrt{3}+1}=\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{3-\sqrt{3}}\\$
$=\dfrac{\sqrt{2}\left(2-\sqrt{3}\right)}{3-\sqrt{3}}\times\dfrac{3+\sqrt{3}}{3+\sqrt{3}}=\dfrac{\sqrt{2}\left(3-\sqrt{3}\right)}{6}\\$
Now,$\dfrac{x}{\sqrt{2}+\sqrt{x}}+\dfrac{y}{\sqrt{2}-\sqrt{y}}=\dfrac{\sqrt{2}\left(3+\sqrt{3}\right)}{6}+\dfrac{\sqrt{2}\left(3-\sqrt{3}\right)}{6}$
$=\dfrac{\sqrt{2}\left(3+\sqrt{3}+3-\sqrt{3}\right)}{6}$
$=\dfrac{6\sqrt{2}}{6}=\sqrt{2}$