Tag: estimating square roots

Questions Related to estimating square roots

The value of $\displaystyle \frac{1\, +\, \sqrt{0.01}}{1\, -\, \sqrt{0.1}}$ is close to .......... .

  1. 0.6

  2. 1.1

  3. 1.6

  4. 1.7


Correct Option: C
Explanation:

$\displaystyle \frac{1\, +\, \sqrt{0.01}}{1\, -\, \sqrt{0.1}}\, =\, \displaystyle \frac{1\, +\, 0.1}{1\, -\, 0.32}\, =\, \displaystyle \frac{1.1}{0.68}\, =\, 1.6$

If $\sqrt{6}\, =\, 2.55,$ then the value of $\displaystyle {\sqrt{\frac{2}{3}\, +\, 3\frac{3}{2}}}$ is

  1. 4.48

  2. 4.49

  3. 4.50

  4. None of these


Correct Option: D
Explanation:
$ {\sqrt{\cfrac{2}{3} + 3\cfrac{3}{2}}}$
$=  {\cfrac{\sqrt{2}}{\sqrt{3}} \times \cfrac{\sqrt{3}}{\sqrt{3}} + 3 \times \cfrac{\sqrt{3}}{\sqrt{2}} \times \cfrac{\sqrt{2}}{\sqrt{2}}}$
$=  {\cfrac{\sqrt{6}}{3} + \cfrac{3\sqrt{6}}{2} = \cfrac{2.55}{3} + \cfrac{3 \times 2.55}{2}}$
$=  {\cfrac{2.55}{3} + \cfrac{7.65}{2} = \cfrac{5.10 + 22.95}{6}}$
$=  \cfrac{28.05}{6} = 4.675$

$\displaystyle {\sqrt{\frac{4}{3}}\, -\, \sqrt{\frac{3}{4}}\, =\, ?}$

  1. $\displaystyle \frac{1}{2\sqrt{3}}$

  2. $\displaystyle - \frac{1}{2\sqrt{3}}$

  3. 1

  4. $\displaystyle \frac{5\sqrt{3}}{6}$


Correct Option: A
Explanation:

$\displaystyle {\frac{\sqrt{4}}{\sqrt{3}} - \frac{\sqrt{3}}{\sqrt{4}} = \frac{2}{\sqrt{3}} - \frac{\sqrt{3}}{2} = \frac{4 - 3}{2\sqrt{3}} = \frac{1}{2\sqrt{3}}}$

If $\sqrt{75.24\, +\, x}\, =\, 8.71,$ then the value of x is

  1. 0.6241

  2. 6.241

  3. 62.41

  4. None of these


Correct Option: A
Explanation:
$\sqrt{75.24\, +\, x}\, =\, 8.71$        ...Given
Squaring on both sides, we get
$75.24 + x = 8.71 \times 8.71$
$\Rightarrow x=8.71^2-75.24$
$ \Rightarrow x = 0.6241$

If $\sqrt{3}\, =\, 1.732,$ then the approximate value of $\displaystyle \frac{1}{\sqrt{3}}$ is

  1. 0.617

  2. 0.313

  3. 0.577

  4. 0.173


Correct Option: C
Explanation:

$ {\cfrac{1}{\sqrt{3}} = \cfrac{1}{\sqrt{3}} \times \cfrac{\sqrt{1}}{\sqrt{3}} = \cfrac{\sqrt{1}}{3} = \cfrac{1.732}{3} = 0.577}$

$\sqrt{2\sqrt{2\sqrt{2\sqrt{2\sqrt{2}}}}}\, =\, ?$

  1. 0

  2. 1

  3. 2

  4. $2^{31/32}$


Correct Option: D
Explanation:

$\sqrt{2\, \times\, \sqrt{2\, \times\, \sqrt{2\, \times\, \sqrt{2\, \times\, 2^{1/2}}}}}$

$=\, \sqrt{2\, \times\, \sqrt{2\, \times\, \sqrt{(2\, \times\, 2^{3/4})}}}$

$=\, \sqrt{2\, \times\, \sqrt{2\, \times\, 2^{7/8}}}\, =\, \sqrt{2\, \times\, 2^{15/16}}\, =\, 2^{31/32}$

By using the table for square root find the value of $\sqrt{7}$.

  1. $2.652$

  2. $2.746$

  3. $2.646$

  4. $2.616$


Correct Option: C
Explanation:

The sqaure root of $\sqrt 7$ is $2.646$

By using the table for square root find the value of
$13.21$
$21.97$

  1. 3.63, 4.60

  2. 3.63, 4.69

  3. 3.53, 4.69

  4. 3.63, 4.19


Correct Option: B
Explanation:

(i)

From square root table, Square root of 13.21 is:

 √13.21 = 3.6345

Therefore,

The square root of 13.21 is 3.63

(ii) From square root table, Square root of 21.97 is:

 √21.97 = 4.687

Therefore,

The square root of 21.97 is 4.69

Find the square root of $10$, correct to four places of decimal.

  1. 3.4623

  2. 3.1023

  3. 3.1693

  4. 3.1623


Correct Option: D
Explanation:
$3.16227$
$3$$+3$ $10$$9$
$61$$+1$ $100$$61$
$626$$+6$ $3900$$3756$
$6322$$+2$ $14400$$12644$
$63242$$+2$-------------$632447$ $175600$$126484$---------------$4911600$$4427129$

$\sqrt{10}=3.16227\simeq 3.1623$
$\therefore$ The square root of $10$ correct to four places of decimal is $3.1623$

The square root of $\displaystyle \frac{\left ( 3\frac{1}{4} \right )^{4}-\left ( 4\frac{1}{3} \right )^{4}}{\left ( 3\frac{1}{4} \right )^{2}-\left ( 4\frac{1}{3} \right )^{2}}$ is

  1. $\displaystyle 7\frac{5}{12}$

  2. $\displaystyle 7\frac{7}{12}$

  3. $\displaystyle 5\frac{5}{12}$

  4. $\displaystyle 5\frac{7}{12}$


Correct Option: C
Explanation:

$\frac{\left ( 3\tfrac{1}{4} \right )^{4}-\left ( 4\tfrac{1}{3} \right )^{4}}{\left ( 3\tfrac{1}{4} \right )^{2}-\left ( 4\tfrac{1}{3} \right )^{2}}$

=$\frac{\left [ \left ( 3\tfrac{1}{4} \right )^{2}+\left ( 4\tfrac{1}{3} \right )^{2} \right ]\left [ \left ( 3\tfrac{1}{4} \right )^{2}-\left ( 4\tfrac{1}{3} \right )^{2} \right ]}{\left ( 3\tfrac{1}{4} \right )^{2}-\left ( 4\tfrac{1}{3} \right )^{2}}$
=$\left ( 3\tfrac{1}{4} \right )^{2}+\left ( 4\tfrac{1}{3} \right )^{2}$
=$\left ( \frac{13}{16} \right )^{2}+\left ( \frac{13}{9} \right )^{2}=169\times \left ( \frac{9+16}{144} \right )=169\times\frac{25}{144}$ 
Then squire root =$\frac{13\times 5}{12}=\frac{65}{12}$=$5\frac{5}{12}$