Tag: estimating square roots
Questions Related to estimating square roots
Consider the Following values of the three given number $\displaystyle \sqrt{103},$ $\displaystyle \sqrt{99.35},$ $\displaystyle \sqrt{102.20},$
1.10.1489 (approx,)
2.10.109(approx,)
3.9.967 (approx,)
The correct sequence of the these values matching with the above number is:
$\sqrt{1\, +\, \sqrt{1\, +\, \sqrt{1\, +\, ..........}}}\, =\, ..........$
If $x\, \ast\, y\, =\, \sqrt{x^2\, +\, y^2}$, then the value of $(1^{\ast}\, 2\, \sqrt{2})(1^{\ast}\, - 2\, \sqrt{2})$ is:
$\displaystyle \frac{\sqrt{32}\, +\, \sqrt{48}}{\sqrt{8}\, +\, \sqrt{12}}\, =\, ?$
If $\sqrt{2}\, =\, 1.4142,$ then the value of $\displaystyle \frac{2}{9}$ is
If $\sqrt{24}\, =\, 4.899,$ then the value of $\displaystyle \frac{8}{3}$ is
$\sqrt{1\, +\, \sqrt{1\, +\, \sqrt{1\, +\, .....}}}$ = ........
$\sqrt{(12\, +\, \sqrt{12\, +\, \sqrt{12\, +\, ........}})}\, =\, ?$
Find the square root of each of the following correct to three places of decimal.
$17$
$1.7$
$2.5$
$\displaystyle\frac{7}{8}$
The simplest form of $\sqrt{864}$ is