Tag: tangents and intersecting chords

Questions Related to tangents and intersecting chords

A tangent from $P$, a point in the exterior of a circle touches circle at $Q$. If $OP=13$, $PQ=5$, then the diameter of the circle is ______________

  1. $576$

  2. $15$

  3. $8$

  4. $24$


Correct Option: D
Explanation:

Since tangent is perpendicular to the radius through the point of contact
so, $PQ \bot OQ$

therefore
${\left( {PQ} \right)^2} + {\left( {OQ} \right)^2} = {\left( {OP} \right)^2}$

$ = {\left( 5 \right)^2} + {r^2} = {\left( {13} \right)^2}$

$ = {r^2} = 169 - 25$

$\Rightarrow {r^2} = 144$

$\Rightarrow r = 12cm$

so, diameter of the circle $2 \times r$
$=2 \times 12$ $=24cm$

Tangents $TP$ and $TQ$ are drawn from a point $T$ to circle $x^{2}+y^{2}=a^{2}$. If the point $T$ lies on the line $px+qy=r$, then locus of the centre of circumcircle of $\triangle TPQ$ is

  1. straight line

  2. circle

  3. parabola

  4. ellipse


Correct Option: A

Tangents PA and PB are drawn to the cicle $S\, \equiv \,{x^2}\, + \,{y^2}\, - \,2y\, - \,3\, = \,0$ from the point $P(3, 4)$. Which of the following alternative(s) is/are correct ?

  1. The power of point $P(3, 4)$ with respect to circle $S=0$ is $14$.

  2. The angle between tangents from $P(3, 4)$ to the circle $S=0$ is $\frac{\pi }{3}$

  3. The equation of circumcircle of $\Delta PAB\,$ is ${x^2}\, + \,{y^2}\, - \,3x\, - \,5y\, + \,4\, = 0$

  4. The area of quadrilateral $PACB$ is $3\sqrt 7 $ square units where C is the centre of circle $S = 0$.


Correct Option: A

If $OA$ and $OB$ are the tangents to the circle ${x}^{2}+{y}^{2}-6x-8y+21=0$ drawn from the origin $O$, then $AB$ equals 

  1. ${ \dfrac { 17 }{ 3 } } $

  2. $\dfrac { 4 }{ 5 } \sqrt { 21 }$

  3. $11$

  4. None of these


Correct Option: B
Explanation:
equation of circle $\Rightarrow x^2+y^2-6x-8y+21=0$
radius $\Delta =\sqrt {9+16-21}=2$
$AB$ is chord of contact & its equation is
$x. x _1 +yy _1+9(x+x _1)+f(y+y _1)+c=0$
$(x _1, y _1)=(0,0)$
$0+0-3(x+0)-4(y+0)+21=0$
$3x+4y-21=0$
Perpendicular distance from $(3, 4)$ to line $l _1$
$CM=\dfrac {3(3)+4(4)-21}{\sqrt {9+16}}=\dfrac {4}{5}$
$AM=\sqrt {AC^2-CH^2}=\sqrt {4-\dfrac {16}{25}}=\dfrac {2}{5}\sqrt {21}$
$AB=2AM=\dfrac {4}{5}\sqrt {21} $ 
option $B$ is correct.


If 't$ _{1}$','t$ _{2}$','t$ _{3}$'are the lengths of the tangents drawnfrom centre of ex-circle to the circum circle of the $ \Delta A B C $, then- $ \frac { 1 } { t _ { 1 } ^ { 2 } } + \frac { 1 } { t _ { 2 } ^ { 2 } } + \frac { 1 } { t _ { 3 } ^ { 2 } } = $

  1. $ \frac { a b c } { a + b + c } $

  2. $ \frac { a b c } { a - b + c } $

  3. $ \frac { 2 a b c } { a + b + c } $

  4. None of these


Correct Option: A

Consider a circle $x^2+y^2=3$. Secants are drawn from (-2,0) to the circle which make an intercept of $2\sqrt{2}$ units on the circle. Identify the correct statements ?

  1. The combined equation of the secants is $x^2-4y^2+2x+1=0$

  2. The combined equation of the secants is $x^2-4y^2+x+1=0$

  3. Angle between the secants is $60^{o}$

  4. Angle between the secants is $30^{o}$


Correct Option: A

From a point P outside of a circle with center at O, tangent segments $PA$ and $PB$ are drawn. If $ \dfrac { 1 }{ \left( { OA }^{ 2 } \right)  } +\dfrac { 1 }{ \left( { PA }^{ 2 } \right)  } =\dfrac { 1 }{ 16 } $ then the length of the chord AB is ..

  1. $7$

  2. $8$

  3. $6$

  4. $5$


Correct Option: A

Parallelogram circumscribing a circle is a ?

  1. Rectangle

  2. Rhombus

  3. Square

  4. kite


Correct Option: B

$y=mx+b$ is a tangent to the circle ${x}^{2}+{y}^{2}-6x=16\ if\ \left (3\ m+b\right)^{2}=5\left (1+{m}^{2}\right)$.

  1. True

  2. False


Correct Option: B

Let  $ABCD$  be a quadrilateral in which $A B | C D , A B \perp A D \text { and } A B = 3 C D$. The area of quadrilateral  $ABCD$  is  $4.$  The radius of a Circle touching all the sides of quadrilateral is = ?

  1. $\sin \frac { \pi } { 12 }$

  2. $\sin \frac { \pi } { 6 }$

  3. $\sin \frac { \pi } { 4 }$

  4. $\sin \frac { \pi } { 3 }$


Correct Option: A