Tag: tangents and intersecting chords

Questions Related to tangents and intersecting chords

A parabola $y = ax^2 + bx + c$ crosses the x-axis at $(\alpha, 0)$ $(\beta, 0)$ both to the right of the origin. A circle also passes through these two points. The length of the tangent from the origin to the circle is

  1. $\displaystyle \sqrt{\frac{bc}{a}}$

  2. $ac^2$

  3. $\displaystyle \frac{b}{a}$

  4. $\displaystyle \sqrt{\frac{c}{a}}$


Correct Option: D
Explanation:

$OT$ is a tangent and $OAB$ is a secant 


we know that

$OT^2 =OA.OB$

         $=\alpha\beta$

         $=\dfrac{c}{a}$ (Since $\alpha,\beta $ are the roots of $y=ax^2+bx+c$)

$\Rightarrow OT=\sqrt{\dfrac{c}{a}}$

From a point $R(5, 8)$ two tangents $RP$ and $RQ$ are drawn to a given cirlce $S = 0$ whose radius is $5$. If circumcentre of the triangle PQR is $(2, 3)$, then the equation of circle $S= 0$ is

  1. $x^2 + y^2 + 2x + 4y - 20 = 0$

  2. $x^2 + y^2 + x + 2y - 10 = 0$

  3. $x^2 + y^2 - x - 2y - 20 = 0$

  4. $x^2 + y^2 - 4x - 6y - 12 = 0$


Correct Option: A

The radius of the circle touching the straight lines $x-2y-1=0$ and $3x-6y+7=0$ is

  1. $\cfrac { 3 }{ \sqrt { 5 } } $

  2. $\cfrac { \sqrt { 5 } }{ 3 } $

  3. $\sqrt { 5 } $

  4. $\cfrac { 1 }{ \sqrt { 2 } } $


Correct Option: B
Explanation:

Diameter of circle=distance of the point (1,0)
from $3x-6y+7=0$
$\therefore$ $\cfrac { 3(1)-6(0)+7 }{ \sqrt { { \left( 3 \right)  }^{ 2 }+{ \left( -6 \right)  }^{ 2 } }  } =\cfrac { 10 }{ \sqrt { 45 }  } =\cfrac { 2 }{ 3 } \sqrt { 5 } $
Now, radius of circle $=\cfrac { 1 }{ 2 } \left( \cfrac { 2 }{ 3 } \sqrt { 5 }  \right) =\cfrac { \sqrt { 5 }  }{ 3 } $

For what positive value(s) of K will the graph of the equation $2x + y = K$ be tangent to the graph of the equation $x^2+ y^2= 45$?

  1. 5

  2. 10

  3. 15

  4. 20

  5. 25


Correct Option: C
Explanation:
  • The radius of circle is $\sqrt{45} = 3\sqrt5$ , center of circle is $(0,0)$
  • For the equation to be tangent to circle , the distance from center of circle to given line must be equal to radius of circle
  • So we get $k/\sqrt5 = 3\sqrt5$ , which gives $k=15$

AB and CD are two chords of a circle which when produced to meet at a point P such that AB = 5 cm, AP = 8 cm and CD = 2 cm then PD = 

  1. 12 cm

  2. 5 cm

  3. 6 cm

  4. 4 cm


Correct Option: D
Explanation:

By intersecting secant theorem,

$PA$$\times$$PB$ = $PD$$\times$$PC$
$8$cm$\times$$3$cm = PD$\times$(PD+CD)
24${ cm }^{ 2 }$ = PD$\times$(PD+2)
${ PD }^{ 2 }$ $+ 2PD - 24 =0$
On Solving the above quadratic equation, we get
${ PD }^{ 2 }$$+6PD-4PD-24=0$
$(PD+6)$$\times$$(PD-4)=0$
$PD=4$cm & $-6$cm
So, $PD= 4$cm is the real solution

If the line $\displaystyle ax+by + c =0$ touches the circle $\displaystyle x^2 + y^2 -2x = \frac{3}{5}$ and is normal to the circle $\displaystyle x^2 + y^2 + 2x - 4y + 1 =0$, then $(a,b)$ are

  1. $(1, 3)$

  2. $(3, 1)$

  3. $(1, 2)$

  4. $(2, 1)$


Correct Option: B
Explanation:

$x^2+y^2-2x=\dfrac {3}{5}\Rightarrow (x-1)^2+y^2=\dfrac {8}{5}$

So, Radius, $R=2\sqrt {\dfrac {2}{5}}$ and it's center is at $(1,0)$

ie, Distance, $d$ from the circle to $ax+by+c=0$ is,
$d=\dfrac {a\times 1+b\times 0+c}{\sqrt{a^2+b^2}}=\dfrac {a+c}{\sqrt{a^2+b^2}} =2\sqrt {\dfrac {2}{5}}\longrightarrow (1)$ (Inorder to satisfy the criterion of a tangent)

$x^2+y^2+2x-4y+1=0 \Rightarrow (x+1)^2+(y-2)^2=4$
So, It's center is at $((-1),2)$
As $ax+by+c=0$ is normal to the circle, it should go through the centre of the circle.
ie, $a-2b=c$ and $(y-2)=m(x+1)\longrightarrow (2)$

Substituting $c$ in (1),
$\dfrac {a+(a-2b)}{\sqrt{a^2+b^2}} =2\sqrt {\dfrac {2}{5}}$
$\Rightarrow \dfrac {a-b}{\sqrt {a^2+b^2}}=\sqrt {\dfrac {2}{5}}$

So, we can say $(a-b)=k\sqrt {2}$ and $a^2+b^2=5k^2$ foe some constant $k$.
$a^2+b^2-(a-b)^2=2ab=5k^2-2k^2=3k^2$
$(a-b)^2+4ab=(a+b)^2=6k^2+2k^2=8k^2\Rightarrow (a+b)=2k\sqrt{2}$
$a=\dfrac {1}{2}((a+b)+(a-b))=\dfrac {1}{2}(3k\sqrt{2})$
$b=\dfrac {1}{2}((a+b)-(a-b))=\dfrac {1}{2}(k\sqrt {2})$

Slope of the line, $m=\dfrac {dy}{dx}$
$\dfrac {d}{dx}(ax+by+c)=0\Rightarrow a+b\dfrac {dy}{dx}=0$
ie, $m=\dfrac {(-a)}{b}=(-3)$ (from above equations of $a$ and $b$)

Substituting the slope in (2),
$(y-2)=(-3)(x+1)\Rightarrow 3x+y+1=0$

Compairing with general equation given,
$(a,b)=(3,1)$

Option B is the correct answer.