Tag: distances and midpoints

Questions Related to distances and midpoints

Equation $4x^{2}+4xy-y^{2}-6x-3y-4=0$ represents a pair of parallel lines, then distance between these lines is

  1. $2\sqrt{5}$

  2. $\sqrt{5}$

  3. $\dfrac{2}{\sqrt{5}}$

  4. $\dfrac{3}{\sqrt{5}}$


Correct Option: A

The difference of the slopes of the lines $x ^ { 2 } \left( \sec ^ { 2 } \theta - \sin ^ { 2 } \theta \right) - ( 2 \tan \theta ) x y + y ^ { 2 } \sin ^ { 2 } \theta = 0$

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: B
Explanation:

According to the question..........

$\begin{array}{l} Let,\, { m _{ 1\,  } }& \, { m _{ 2 } } \ sum\, of\, the\, slope:\, { m _{ 1 } }+{ m _{ 2 } }=\dfrac { { -2h } }{ b } ----(i) \ and,\,  \ product\, of\, slope:{ m _{ 1 } }.\, { m _{ 2 } }=\dfrac { a }{ b } -----(ii) \ Here, \ a{ x^{ 2 } }+2hxy+b{ y^{ 2 } }=0.........(general\, equ\, of\, straight\, line.) \ cofficient\, of: \ a={ \sec ^{ 2 }  }\theta -{ \sin ^{ 2 }  }\theta  \ h=-\tan  \theta  \ b={ \sin ^{ 2 }  }\theta  \ Now,\, value\, put\, { { into } } \ sum\, of\, the\, slope:\, { m _{ 1 } }+{ m _{ 2 } }=\dfrac { { -2h } }{ b } ----(i) \ \Rightarrow { m _{ 1 } }+{ m _{ 2 } }=\dfrac { { -2(-tan\theta ) } }{ { { { \sin   }^{ 2 } }\theta  } } =\dfrac { { 2\sin  \theta \times 2 } }{ { 2{ { \sin   }^{ 2 } }\theta \, .\, \cos  \theta  } } =\dfrac { 4 }{ { 2sin\theta \cos  \theta  } } =\dfrac { 4 }{ { \sin  2\theta  } }  \ and, \ product\, of\, slope:{ m _{ 1 } }+{ m _{ 2 } }=\dfrac { a }{ b } -----(ii) \ \Rightarrow { m _{ 1 } }.\, { m _{ 2 } }=\dfrac { { { { \sec   }^{ 2 } }\theta -{ { \sin   }^{ 2 } }\theta  } }{ { { { \sin   }^{ 2 } }\theta  } } =\dfrac { 1 }{ { { { \sin   }^{ 2 } }\theta \, .\, { { \cos   }^{ 2 } }\theta  } } -1\, \, \, \, \, \, \, \, \left[ { divide\, by\, 4 } \right.  \ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\dfrac { 4 }{ { 4{ { \sin   }^{ 2 } }\theta \, .\, { { \cos   }^{ 2 } }\theta  } } -1\, \, =\dfrac { 4 }{ { { { (\sin  2\theta ) }^{ 2 } }\,  } } -1\,  \ \, \, \, Now,find\, difference: \ \, \, \, \, \, \, \, \, \, { ({ m _{ 1 } }-{ m _{ 2 } })^{ 2 } }={ ({ m _{ 1 } }+{ m _{ 2 } })^{ 2 } }-4{ m _{ 1 } }.\, { m _{ 2 } } \ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, ={ \left( { \dfrac { 4 }{ { \sin  2\theta  } }  } \right) ^{ 2 } }-4\left( { \dfrac { 4 }{ { ({ { \sin   }^{ 2 } }2\theta )\,  } } -1\,  } \right)  \ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\dfrac { { 16 } }{ { ({ { \sin   }^{ 2 } }2\theta )\,  } } -\, \dfrac { { 16 } }{ { ({ { \sin   }^{ 2 } }2\theta )\,  } } +4 \ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \Rightarrow \, \, { ({ m _{ 1 } }-{ m _{ 2 } })^{ 2 } }\, \, \, =4 \ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \Rightarrow \, ({ m _{ 1 } }-{ m _{ 2 } })=+\sqrt { 4 } =2 \ \, \, \, \therefore \, \, \, the\, \, differece\, of\, slope\, \, is\, 2. \ So,\, that\, the\, correct\, option\, is\, B.\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,  \end{array}$

Curves $a{ x }^{ 2 }+2hxy-2gx-2fy+c=0$ and $a'{ x }^{ 2 }-2hxy+(a'+a-b){ y }^{ 2 }-2g'x-2f'y+c=0\quad $ intersect at four concyclic points $A,B,C$ and $D$. If $P$ is the point $\left( \cfrac { g'+g }{ a'+a } ,\cfrac { f'+f }{ a'+a }  \right) $, then which of the following is/are true

  1. $P$ is also concyclic with points $A,B,C,D$

  2. $PA,PB,PC$ in G.P

  3. ${ PA }^{ 2 }+{ PB }^{ 2 }+{ PC }^{ 2 }=3{ PD }^{ 2 }\quad $

  4. $PA,PB,PC$ in AP


Correct Option: A

The four straight lines given by the equations $12x^2+7xy-12y^2=0$ and $12x^2+7xy-12y^2-x+7y-1=0$ lie along the sides of a 

  1. Square

  2. Rhombus

  3. Rectangle

  4. None of these


Correct Option: A
Explanation:

taking $y$ is constant and finding the value of$x$ by roots formula.


$12x^2+(7y)x-12y^2=0$

$x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}=\dfrac{(7y)-\sqrt{(7y)^2-4(-12)y^212}}{2\times 12}$

$\dfrac{\Rightarrow x=-7y\pm\sqrt{49y^2+576y^2}{}}{2\times 12}$

$\Rightarrow 24x=-7y\pm \sqrt{625}y$

$\Rightarrow 24xy=-7y\pm 25y$.........(1)

Again $12x^2+(7y-1)x+(-12y^2-1+7y)=0$

$\therefore x=\dfrac{-(7y-1)\pm\sqrt{(7y-1)^2-4}(12)(7y-1-12y^2)}{24}$

$\Rightarrow x=\dfrac{1-7y\pm\sqrt{49y^2+1-14y-336y+48+576y^2}}{24}$

$\Rightarrow 24x=1-7y\pm\sqrt{625y^2-350y+49}$

$\Rightarrow 24x=1-7y\pm (25y-7)$

$\Rightarrow x=\dfrac{1-7y\pm 25y-7}{24}$........(ii)

from (i) and (ii) we can clearly see co.efficient of $x$ and $y$ are same so slope are sample $m _1=\dfrac{24}{18},m _2=-\dfrac{24}{32}$

So $m _1m _2= -1$

$\therefore $ it is a square

$3x^2+8xy-3y^2=0$ represents a pair of lines AB and BC, whereas the equation $3x^2+8xy-3y^2+2x=4y-1=0$ represents two lines CD and DA.
Answer the given question.
The equation of the CD is,

  1. $x+3y+1=0$

  2. $x+3y-1=0$

  3. $x-3y+1=0$

  4. $x+y+1=0$


Correct Option: A

The value of $k$ so that the equation $12{x}^{2}-10{y}^{2}+11x-5y+k=0$ may represent a pair of straight lines is

  1. $k=\dfrac{91}{48}$

  2. $k=\dfrac{94}{43}$

  3. $k=\dfrac{83}{23}$

  4. None of these


Correct Option: A
Explanation:

$\Rightarrow$  The given equation is $12x^2-10y^2+11x-5y+k=0$

$\Rightarrow$  Comparing it with $ax^2+2hxy+by^2+2gx+2fy+c=0$
$\Rightarrow$  $a=12,\,b=-10,\,h=o,\,g=\dfrac{11}{2},\,f=\dfrac{-5}{2},\,c=k$
$\Rightarrow$  The condition is $abc+2fgh-af^2-bg^2-ch^2=0$
$\Rightarrow$  $12\times (-10)\times k+2\times (\dfrac{-5}{2})\times\dfrac{11}{2}\times 0-12\times (\dfrac{-5}{2})^2-(-10)\times (\dfrac{11}{2})^2-k\times (0)^2=0$
$\Rightarrow$  $-120k+0-75+\dfrac{605}{2}-0=0$
$\Rightarrow$  $\dfrac{-240k-150+605}{2}=0$
$\Rightarrow$  $-240k+455=0$
$\Rightarrow$  $k=\dfrac{455}{240}$
$\therefore$   $k=\dfrac{91}{48}$

$\begin{array}{l}\\left( {3x - 2y} \right)\left( {2x + y} \right)=\end{array}$

  1. $ =6{{x}^{2}}-xy+2{{y}^{2}}\,\, $

  2. $ =6{{x}^{2}}+xy-2{{y}^{2}}\,\, $

  3. $ =6{{x}^{2}}-xy-2{{y}^{2}}\,\, $

  4. $ =6{{x}^{2}}+xy+2{{y}^{2}}\,\, $


Correct Option: C
Explanation:

Part (1)

$ \left( a-2 \right)\left( a+2 \right) $

${{a}^{2}}-4$ 

Part (2)

$ \left( 3x-2y \right)\left( 2x+y \right) $

$ =6{{x}^{2}}+3xy-4xy-2{{y}^{2}} $

$ =6{{x}^{2}}-xy-2{{y}^{2}}\,\, $

Hence, this is the answer.

If the pair of lines ${x^2}\, + \,2xy\, + \,a{y^2}\, = \,0$ and $a{x^2}\, + \,2xy\, + \,{y^2}\, = \,0$ have exactly one line in common, then joint equation of the other two lines is given by

  1. $3{x^2}\, + \,8xy\, - 3\,{y^2}\, = \,0$

  2. $3{x^2}\, + \,10xy\, + 3\,{y^2}\, = \,0$

  3. ${y^2}\, + \,2xy\, - 3\,{x^2}\, = \,0$

  4. ${x^2}\, + \,2xy\, - 3\,{y^2}\, = \,0$


Correct Option: B

The lines $2x^2+6xy+y^2=0$ are equally inclined to the lines $4x^2+18xy+by^2=0$ when $b=1$

  1. True

  2. False


Correct Option: A
Explanation:
Consider the equation $2{x}^{2}+6xy+{y}^{2}=0$
Equation of angle bisector is 
$\dfrac{{x}^{2}-{y}^{2}}{2-1}=\dfrac{xy}{3}$      
$\dfrac{{x}^{2}-{y}^{2}}{1}=\dfrac{xy}{3}$
$\dfrac{{x}^{2}-{y}^{2}}{xy}=\dfrac{1}{3}$         .......$(1)$
Consider the equation $4{x}^{2}+18xy+b{y}^{2}=0$
Equation of angle bisector is 
$\dfrac{{x}^{2}-{y}^{2}}{4-b}=\dfrac{xy}{9}$ 
$\dfrac{{x}^{2}-{y}^{2}}{xy}=\dfrac{4-b}{9}$      .......$(2)$
From $(1)$  and $(2)$ we have
$\dfrac{{x}^{2}-{y}^{2}}{xy}=\dfrac{1}{3}=\dfrac{4-b}{9}$
$\Rightarrow\,\dfrac{1}{3}=\dfrac{4-b}{9}$
$\Rightarrow\,4-b=\dfrac{9}{3}=3$
$\Rightarrow\,-b=3-4$
$\Rightarrow\,b=1$
$\therefore\,b=1$

Find the equations of the two straight lines drawn through the point $(0,a)$ on which the perpendicular let fall from the point $(2a,2a)$ are each of length $a$.
 then equation of the straight line joining the feet of these perpendiculars is $y+2x=5a$

  1. True

  2. False


Correct Option: A